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ON THE THEORY OF ROTATING MAGNETIC STARS. PART II.

The basic equations of a rotating magnetic star are given in the preceding paper.
In the present one the approximate solutions of these equations are sought for under
very general conditions. No idealized structure is assumed for producing either the

. velocity field or the magnetic field. So, besides axial rotation, meridional motions too

are examined, and the vector of the magnetic field strength is supposed not only as
locating itself in the plane of the meridian, but also as having a component perpendicular
to it. This component forms the so-called toroidal megnetic field, whose mathematical
investigation explained in the present paper finds itself among the first articles on
such a subject. .

) Whereas the first four parts of this paper contain the pure mathematical dis-
cussion of the problem, from the fifth part on the results of the theory are compared
with the different solar and astrophysical observations. The theory gives the laws
of the distribution of the angular velocity on the solar surface and those of meridional
motion correctly. It follows from the theory that the viscosity of the solar matter must
be very great, the electric conductivity very small. These results are in harmony with
the proprieties guessed till now of hydromagnetical turbulence. .

On the ground of the theory an external magnetic dipole field cannot be deduced
for the Sun. In accordance with the theory the external field has an octopole structure.
From the results it may be concluded that.the velocity distribution of the typical mag-
netic stars cannot be such as that of the Sun, because it is very improbable that the
po(viverful magnetic fields of the stars would arise from a field having a pole of higher
order. ’ :

A relation between the radius of the star and its viscosity coefficient can be
established. The correctness of this relation is examined by the aid of data of pertinent
literature.

1. Introduction

In the preceding paper we have demonstrated that in a magnetic star,
besides axial rotation, meridional motions, and the meridional magnetic
field, there appears also a field perpendicular to the plane of the meridian.
Thus if spatial polar coordinates are introduced, the following components
of velocity and magnetic field must be considered :

b, Dy b, — components of b,

Or, sy H, — components of 9.

If the system is independent of the coordinate ¢, the meridional components
of both vectors (r- and ¥-components) may be expressed by the g-component
of their vector potential :

by = rot B,

Dm = rot A
Hence the determination of these four functions: %, v, A, H, will be
sufficient for the discussion.

1*
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The boundary conditions of the velocity field are well-known : B,
zero on the boundary of the meridional quadrant; b, is zero only along
the axis of rotation, in the other points of the space it differs from zero and
is symmetric to the plane of the equator.

The initial conditions and distribution of the vector. potential 91
are similar to those of v,. The component §, originates from the electric
currents passing on in the meridional plane. "These currents start in con-
sequence of the spontaneously arising electric field and the motion (axial
rotation) of the conducting gas in the magnetic field. Meridional electric
currents, however, form an entirely closed system, for this reason all mag-
netic lines of force are included in the stellar interior. Hence the boundary
conditions of §, are as follows: §, can be continous in the neighbourhood
of the surface only if it is zero on the whole surface of the star ; from the
circumstance that electric currents are symmetric to the plane of the equator,
it follows that §, must be zero also along the axis of rotation and the plane -
of the equator. Accordlngly, 9, is zero on the boundary of the merldlan
quadrant, i. e. its boundary conditions are identical with those of B,

2. Basic Equations -

In the previous paper the simplification $, = 0 was introduced ;
for this reason only these three functions : B, b, A, had to be determined.
For their discussion three differential equat1ons were deduced. In order
to solve also the present problem we start on these three differential equati-
ons, -which in the more general case (5) ;ﬁ 0) are as follows :

- a. The first equation is .

rot [rot B, @ ] = %49, Y

the @-component of which is

o 1 () 1 @ [5) |

— 7 8in ¥ ——smﬁ‘ — 4+ — 18 9 +
rsind 89 ( @¢) or rs m1‘}+ r ar( )r 09 rsmfﬁ}

+ r sin ¢ - ——(51n19’91)— O ii( )——— O |
rsin® 09 or rsin @ r or r 9% rsind

w[dg, — D |, e

®¢ rzsmz'ﬂ : (2)

In the previous paper this’ equatlon was essentially simpler by reason
of the supposition §, = 0. There a relation between U, and b, was given
by (2), which expressed the coincidence of the magnetle lines of force and
the surfaces of constant angular velocity. In the present case (2) serves
for the determination of the omitted $,.

b. The second equation has been derived from the - and 9- components
of (1). By means of a simple calculation it can be retransformed into the
first Maxwellian equation, from which it was deduced originally. Let us
introduce the substitution $ = rot U into the first Maxwellian equation :

— - [rot 58,,'1'013'%[] =xAN, Do (3)
)7 ‘
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the gv-component of which- gives our second equation -

1 8 9 1 9 1 3 )
ind B A)—— — (@B —(ind Y ) =
rsmz‘} 819( ) ror o %) r or (T- ¢? r sin 9 80(81 )=
=n|AY ——2 |, 4
g ¥ r2gsin?¢ > ®

supposing € = 0, which is valid if-the system be independent of the coor-
dinate ¢. From equation (4) %, may be determined.
From the r-and 9- eomponents of (3) we may express electric field

strength and charge density. Let us form the divergence of the first Ma,x-
wellian equatlon

div € = — idiv [v, 9],
c

“whence; by means of the substitution € = grad @, the following differential

equation will be deduced for the potential P :
cd D = (rot H, v) — (9, rot v),

from which, if § and b are known, the electric potential may be calculated.
In the present paper we do not occupy ourselves with the solution of the
above equation, since observation of the local electric fields around the Sun
as well as around the stars is very uncertain and offers no data by which the
correctness of the theory could be controlled. '

c. The third equation is nothing but the @-component of the hydro-

- dynamical equation. of motion ; from it v, may be determined :

1 1
—(sin?d B ry) — — —(rB ———smﬁb —
r sin ¢ 819( ) r ( 'p) r ( 2 rsind o ( o~
1 1 3 3 1198, ... 1 8
— e —(sind A - ———(r¥Y (sin?
: o rsind 81‘}(1 ) r 87’ (T@¢)+ or 87‘( gz’)7'sm'a.‘} oY Sg
) N ‘
=4y —— 2 |, 5
|7 7‘2Sin279) (®).

d. We have to deduce another equation for SB vector potential of
the meridional currents. If ¢ = constant :

b =rot B;

this offers a relation among b, b, and B, if the system is 1ndependent of
the coordinate ¢. Let us take its rotatlon

AP = .—Arott):—c,'
the @-component of which is :

4% —#:—c'. (6a)
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For €, as a newly introduced unknown function we deduce a differen-
tial equation from the equation of motion. Let us take the rotation of the
equation of motion :

rot [rot B, ¢] — rot [rot A, rot H] = v,

the @-component of this is:

’ 2 2
1‘i O, ) sinﬁcosﬁ-«—a—(——b"” ] sin? 9 —
or | rsin & 9% |\ rsin @
2 2
—ri —@L) sin 9 cosﬁ——a— SQ"’ sin? ¢ =
or | rsin @ 99 \rsin 9
=v|d¢ ——_%’_ . : ' (6b)
. 72 gin2 ¢ _

The equations (6a) and (6b) may be contracted into an only biharmonic
equation, but as we shall see later, such transformations do not promote
the solution of the equations.

For an entire discussion of the problem, besides the above equations,
we need the equation of the potential of the gravitation, Whlch we obtain.
by taking the divergence of the equation of motion :

div (b, grad) v — div (§, grad) § — — dnGo — —AP. (7)
. |

In what follows we assume that the star is spherical, the density constant ;
therefore the solution of the above differential equation has no importance.

3. Solution of the Basic Equations

We solve the basic equations with the method of successive approxi-
mation. In assuming starting-values for %6, and , and in writing the same
values into the differential equation which govern b and ¥, we solve them
and obtain an approximative expression for 9, and %I,p In the second step
we write these approximative expressions’ into the differential equations.
governing B, and 9, obtaining approximative values for these functions.
By means of convemently chosen starting-values good approximation may
be obtained even after an only step (if the starting-values for B, and 9,
have been so chosen that they may be also approximate Values).

3.1. Development of U.,.
L2t us assuma as starting-value for 9B, that
B, = By, Py (8)

It is easily comprehended that this function may fulfil the boundary con-
ditions. For Py, OF in general form y;, the solution of the following dlfferen-
tial equation 1is :

_l_i(rz@i]+(g2_w]wl=0_ )

r2 dr dr r2
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If A has been chosen so that the first zero of ¥, may be on the surface of the
star, (8) will fulfil the boundary conditions of %,
From the theory of the Bessel functions it is known that!

== (2.7‘)'—1/2 JH-‘/, (}J')

-where Jiiy, is a cy]mder function of the order ! + 15. Furthermore it is

known that Jiyy, if I is an integer, may be expressed by a polynome, thus
e. g. in the cases I =1 and | = 2:

sin Ar cos Ar
Y= : - ’

A2 Ar
1,02=[ 3 ‘——isinlr——, cos Ar,
A3y3 Ar ) AZy2
and the first zero of these functions are:
a= HA98 e
ry
a— 27008 e 1o
ry

where r, is the stellar radius.
If we 1n01dentally denote the left-hand side of (4) with @ (%), we
may Wwrite : »

A9 —L-—-;Q@I) )

@
r2 gin2 9

According to our theory, published in a preceding paper?, #x is, in order of
magnitude, equal to », consequently it is a great number. Hence the con-
vergence of the subsequent series is assured :

=]

g

n=0

EJnAm' | (11)

e

As @, in its quality of operator, linearly contains ¥, we may write :

Q)=

n=0

'Q(4,). . (2)

If we write (11) and (12) into (10), we shall obtain the following recurrence
formula : :

A, ‘ A
A4, — m—Q(An 1), (13)

1 Jahnke —Emde : Funktionentafeln, 1928, p. 91.
2 Mitt. der Sternwarte Budapest, No. 26., p. 9.
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where the righf-hand side means the following expression :

1 0 1 o

Q(A4,_1) = — (sin?B,) — — (rdp-1) —
¢! 1)-'- rsind® 99 (sin3 ;) r or (4 1,)
1 o 1 9 ~
—— —(F — —(sin #A4,-1).
r or 2 rsind® 99 ( 1.)

A, results from the following differential equation :
. , "
72 gin? ¥

A4, — =

b

. which in the interior of the star gives a value free of singularity only if -

Ay = Hyr sin & = HyrPP, ' o (19) '
more generally : -

AO = 2‘ Hn—lrnpnl)s

n=1

where Ho, H,, ..., H, are arbitrary constants; in the centre of the star,
however, the magnetic field must needs be homogeneous, therefore the con-

~ dition H,# 0 has to exist.

In what follows the computations will be performed by means of the
vector potential afforded by formula (14), for it gives sufficient precision,
as it will be seen later. Therefore A4, is nothing but the internal magnetic
vector potential of a sphere of homogeneus magnetization. The lines of
force run parallel to the axis of rotation. The value of field intensity equals
H, in every point of the space. ‘ ,

By means of a simple computation we obtain that the differential

equation for A,, in virtue of (13), is:
cr2sin?d - 5
In computing the right-hand side we have availed ourselves of the recurrence

formulae relative to the functions ¢1.! We seek for a solution in the following
form : : L

’/’1P{D -+ —_—42‘1;H0".7P3P(31).

. _ 1 1
A, = a, P + asPy’,

_ for a, and a; these differential equations may be deduced :

Lir2%_2a1=_6]»ﬁﬂow’
r2 dr dr | r2 5 1
1 d (dag) 1205 415H0\w3'
r2 dr dr r? S

1Vid. Appendix 1.
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The solution are obtained by the variations of the parameters :

_ 2aH, 66H,
‘,a]_ - 5 ( 0 + ) 52’ y)la
_ 4aH, __4pH,
ag = 35 7Yy + Yy = 51 Y3»

where the recurrence formulae relative to y have been used repeatedly
If we write the above expression and (14) into (11), we obtain A, ex-
panded in a series of the powers of 1/x, stopping at the hnea,r terms :

Hoﬂ
5%

At this passage we remark that this expressmn produces only the curls of
the internal magnetic field, not fulfilling other conditions of the field ;" it is
later that we shall be engaged in evaluating these

o, =H, PP S0 3y PP — 2P (15)

3.2. Development of v,

The differential equatlon affording b, is analogous to that of %, In
the case 9, = 0 these two equations will have entirely identical forms.
But as we saw in our previous paper,! such a simplification of the problem
does not lead to any physically interpretable result.

9, cannot be identically zero in the interior of the star. For this reason
b, and 9, can never be of identical distribution. Let us assume for 9, similarly
-to what was done for B, the fo]lowmg starting-value :

9y = apy Py, ' | (16)

which, apart from the coefficient, is identical with the initial value of D
This circumstance is motivated by the fact that the boundary condltlons
in relation to both functions are identical. :

Let as write (16) into the left-hand side of (5) and substitute for b,
the following series : .

b(,,:Z‘

n=0

i] V. o Can

14

which is convergent, since ¥, coefflclent of the turbulent Vlscos1ty, is a very .
large number.

For .V, and V; we obtain this differential equation :

AV, — —Vo oy,
: r2 sin? &
whence
Vo = w,r sin 9
and ) ' ‘
" AV — T =9 H, 1'!’1P:(Ll)““'4“[ H Aypg P,
72 sin2 ¢ 5 5 '

1 Mitt. der Sternwarte Budapest, No. 32.
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the solution of this is entirely similar to that of 4, :

Vi | o GuP — 2y
hence | |
= ogr PR+ (e TGPy —2wPy). 9
In the case $, =0, i. e. a = 0, this value will be completely analogous to
that of 2. Consequently our result is in correspondence Wlth the case A, = b,

obtained in the previous paper.

3.3. Development of 9,

In the above remarks we have determined the functions %, and b,
developing them into the series of the powers of 1/x and 1J». Equatlons
(15) and (18) give the expression of them up to linear terms. For the cal-
culations we have assumed the subsequent starting-values in reference to

B, and 9, :
B, =By, Py and 9, = ay,PP.

In the present chapter we are seeking the solution for §,, in the subsequent
one for B, by availing ourselves of (15) and (18). In this way we obtain
9, in first apprommatlon

The two first members on the left-hand side of (2) contain the second
order products of B, and 3§¢; consequently, being quantities of second
order, they may be neglected in first approximation. Now let us substitute
into the third and fourth members the functions %, and b, obtained just
now by means of a development in the terms of the powers of 1/ and 1/»
up to the linear terms :

‘ bw _
Agg‘p_;ésin“} ,
_ Hyo, A 67-i ﬁppm_yi Ys\p P‘1’+4ipisinﬁj— it P{D},
x dr |l [ V1 dri r 173 r sin &
where .
:?_woﬁg‘l‘ﬂp_a_
! 5 V0 .

Furthermore the following relations exist?! :

e (ﬁ) — — Ay,

dr | r

d(% 24 52
r—it— = — _ )
dr\r] 71'02 : Va

1Vid. Appendix 1.
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 ROTATING MAGNETIC STARS IL . 11
(1) 1 1 (1)
P PY =gin ¢ cos ¥ = — PP,
3

P P(l) J— P(l) _:l__ Pfll),

— —sin?d— "2~ P®

d (cos #)2

and
popp =20 par_ O pa.
7 7
by way of substitutions executed. with these values we obtain :
12 Hyw,- '
4 —_E’_L=——°—¥5 PL — 29, PY), 19
'@tp 2 5in? O 35 5y, 2, p PP) (19) .
hence
|112H, o\B¢+ Hyo
3B xVQ

Dp = 5y PP — 29, PP, (20)

3.4. Development of B,

In order to compute the vector potential of the meridional current
we have, first of all, to determine the vector ¢, by means of the solution
of equation (6b). If we write equations (18) and (16) into (6b), we obtain
by neglecting the second order qualities :

A‘c{p-_ %C'P___ — i i
r2 gin2 4 Y or

b
r sin 9

' 2 ‘ 2
Oy ) sinﬁcosﬁ—i[ ) gin2 ¢

r sin ¥ o0

and, considering only the linear terms, (v, /r sin ) will be :

2
P |’ oy + 2201 [3”’1 - 29, Py— 10ﬁP3],
.rsmz? A r r

by way of substitutions performed with these values, after a- certain modi-
fication we obtain :

¢ 6w,w
Ae — ? — 01 (59 PV 29 P(I)).
: r2 sin? 9 Tv 2 e

The solution of this equation is :
¢, = 6;"0 %ﬂe,,;t,ﬂoa 5y, PP — 29, PP). (21)
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Finally, by help of ¢, just determined, let us express B, from differen-
tial equation (6a). Writing (21) into (6a) we obtain

AB. — B, o 6% wypo + Hya
7 r2sin? @ 7 120

(5 '/’2P(21) — 2y, PP,

the solﬁtion of -Which is

B — 6 0, wo/39+Hoa
= :

T, BWPE—2ePD. (@)

4. Discussion of the Basic Equations

In the preceding chapter we have determined the four wanted functions
in first approximation. The correctness of solutions is shown by the- fact
that, after the integration, we have reobtained the starting-values for the
functions ©, and B,.- The functions obtained by means of integration,
however, contain also terms of higher order, which may be interpreted in
such a way that the functions are expressed in better approximations than
the starting-values. The further proceeding would be an iterated integration
of the differential equations with these new functional values. In the present
paper, however, we-do not perform this »second approximation«. For in the

- further approximations neither the uniform density nor the spherical shape

of the star can be applied. ‘
In the present chapter we are going to indicate some important pro-

perties of ¥, v, §, and B,
4.1. Relations between the parameters

. The condition that the first order terms of the functions 9, and B,
should correspond to their starting-values; is the necessity of the agreement -

of the coefficients. The starting-values of the functions 9, and B, were':
B, =y, PP and 9, =apPP,
whereas the terms corresponding to their integrated values are :
B, = ;‘SOwO wyfo +H0a‘1,02P<21)’ ,
7 240
30H, w,fo+ Hya
= - P(l)’
@(p " | ,%1’}.29 ,(p2 2
i. e. :
B = 30w, w,fo + Hya ©(23)
7 240
and _ -
" 30H, wyfo + Hya : | (24)

‘ 7 %A% . -
must be doubtless.

John G. Wolbach Library, Harvard-Smithsonian Center for Astrophysics ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?%3F%3F%3F%3FCoKon0037&amp;db_key=AST

"CoRornn37!

ROTATING MAGN ETIC STARS II. 13

As these two equations are linear and hom‘ogeneo'u.s in a and B, only
the ratio a/f may be determined from them, if the determinant of the system
is equal to zero. The ratio a/f is obtained if (24) is divided by (23): ‘

2
e Hypvi (25)
; B Wy ¥
and the vaniéhing of the determinant is expressed by the following equation :
' 242 4 ‘
wo 4 Hza 7 _ v o | (26)
x0 . 30

Accordmg to (25) the mdependent parameters are a, %, ¥, w, and H, ; accord-
ing to (26) there is a relation between these, i. e. the number of the indepen-
dent parameters diminishes by one : they are either a, », w, and H,. or #,
v, w, and H,. But in the course of the further dlscussmn it results that the
number of the parameters can be still reduced. We remark, however, even
at this passage that within the limits of the present theory we can expect
no connection between w, and H,. These have to be considered as mdepen-
dent parameters.

4.2. Distribution of the ma,gnetw f@eld
The solution of (2) was :

91 —_ P(1) 2'81;[0 (3V’ })(1)_2,p P(l))
5xd

This expression produces only the curls of the magnetic field,. its part free
of curls is-obtained by means of solving the equation

QI‘””—_O
r“‘smzﬁ

Whence QI = " Py and A, = PP/r"*1, Bo let us complete A, with terms like
these, and we shall obtain :

68 (1;(__4ﬂ~3 |
{r+51xw1]P1+_ms s V) TR

A%, —

A, = H,

The external field consists only of terms free of rotation :

.

A, ;Ho ﬁp(ll)_'_ﬁs__pg)}’
| 72

where m, and mg are constant. %, and rot A, have to pass continuously the
stellar surface taken by us for apprommately spherical. Consequently the
following expressions must hold on the one hand in the internal field :

Or = 0{(1+6—ﬁﬁ)2P1+(hr2 48 ”’3]1213
‘. BAx 7 .

54% r

5o = —Hy|[2+ ﬂ(g%_i%]]mw;mz‘ 82 %_3%]]1»(3»;,
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on the other hand in the external field :

9r=H

2m, 12mg

Py +

Eat

' m 3m,
90— H, {—; PP+ 2o py).

The conditions of mathematical continuity are :

9 .
142 Lyry =
5 x

. T
hrs — % %¢4(,1,.*) _ 7;
1+ _i_ %‘%(lr*) = ———;— % )
thre + ;—2 —ii%w*) = —“”—:j—

from which it follows that m, is equal to zero, i. e. the external dipole field
is identically zero, furthermore : , i
7‘9—: 28,865 ; 3 — _ 0,6631; hr2= 0.
& *

Consequently the external field is only a pole of third order i. e. an
octopole-type field. But this cannot be looked upon by us as definitive result
of the theory; from it may be solely concluded that induced electrical
currents taken into consideration are not sufficient for the interpretation of
the permanent stellar field. Such a field can be deduced only by the aid
of a particular theory, for instance if it is supposed that also a charge-trans-
port ariges along with a mass-transport. Such a phenomenon may be theore-
tically derived from the electron diffusion in the non-conservative force-

field (whirl-field).
By making use of the above relatlons we obtain as internal potentlal

QIQJ - H(,T*

[ + 183,03y, (M)]Pm — 199,54y, (Ar) PO, (25a)
T

and as external potentlal
A — — 33,12H, 2 Py  (25b)

On principle the discussion affords some significant meanings.
1. Within- its present extent the theory is not suitable to the inter-
pretation of the permanent stellar field. For this purpose further theories

are required.
2. Blx is constant, whence it follows that in the case of infinite con-

ductlwty (¢ — 0) the mer1d10nal current ‘will vanish (8 — 0).
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4.3. Problem of the permanent magnetic field

From what has been stated it follows that the present theory is not
suitable for the deduction of the permanent magnetic fields of the stars and
those of the Sun. Instead of the homogeneous field H,, introduced into (14),
— a field free of divergence and.curls —, we should have to assume a
vortical field. Nevertheless to introduce a vortical field is impossible within
the limits of the present theory. By the aid of a new hypothesis we have
to deduce it from the electric currents running about the axis. Accordmg
to our present conception non-conservative electron diffusion arising in a
field of vorticity may originate such currents. The phenomenon resembles
the change of energy, arising in consequence of internal friction. The charge
of energy of the ions and that of the electrons are different from each other,
therefore also their distribution of velocity will be different ; consequently
in the separate parts of the space the velocity of the electrons i in their rotation
about the stellar axis is greater than that of the ions. This phenomenon
will be equivalent to an electrical current, which gives rise to a magnetic
field whithout the formation of simultaneous charge of space.

Let us suppose that electron diffusion is not influenced by any other
electromagnetic phenonena (charge of space, induction) and that charge
diffusion is proportional to (b, grad) . In this case the differential equatlon
for the vector potential of the magnetic field is:

%[ _— 1)
: A%, = 72 gin? ¢ Conky,
which leads to the same result as (13). Accordingly the permanent dipole
field cannot be expressed even by such a modification of the theory. There-
fore we have to conclude that dipole field cannot be deduced from the first
approximation elaborated at present, but, in order to obtain it, we must
introduce also the distribution of density and temperature.-

- 4.4 Toroidal magnetic field

The component of the magnetic field, perpendicular to the meridional
plane, is given by (20). It produces a toroidal field. The lines of force of
this field are circles concentric Wlth the axis of rotation and parallel to the
equator.

In what follows we examine the formula of H, given by (16) in accord-
ance with this :

Hy2%Bv

Wy %

9, = v Py,

or after making use of the relations

% = 28,865 and Ar, =5,7608

we obtain :

H,v

wors

$p= 957,9 ="y, PP. _ (29) .
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By virtue of (2), the subsequent differential equation refers to the external
field : - '

A —>—:@‘p

?  r2gin2 ¢

We have to seek those solutions of the above equation which are zero on the

stellar surface. It is easily intelligible that this condition can be satisfied

in the whole external field only by the trivial solution §, = 0, i. e. the external -
field of §, is 1dent10a]ly zero, hence the internal field must form an utterly

closed system in the interior of the star. And this is also clear, for the lines

of force, being concentric circles, are closed in the stellar interior. The toroidal

field mten31ty 9, cannot be observed its existence, however, as shown -
_in the preceding paper, is necessary, if the star rotates and has a magnetic
field.

A toroidal magnetic field takes rise from. merldlonal electric currents,

for according to the Maxwellian equations :

)
-g = rot)r.b(p.

From the fact that the expressuon of §, is analogous to that of B,
follows that the family of trajectories of the electric streamlines is 1dent1cal
to that of meridional mass-currents. :

4.5. Distribution of the velocity field

- Introducing relations (25), (26) and.(28) into (18), we obtain

' TA2 By
b = w,rPL
@ 0 1 ‘I" 75

(3 P(l) _— 21/}3P(1))
. ®g
If we introduce trigonometric functions instead of spherical ones, we get

by a simple computatmn the expression of the dlstnbutlon of angular velo-
city :

(liad &————723‘31} &éoszﬁ.

- ' (30a)
5w, 12 bw, r

cozza_)o—l'—

On the stellar surface, approximately taken for spherical, y, = 0 and
w3 = 0,166 ; which values, if written in, give the surface angular velocity
distribution :
1282,5 '
w = w, — 128250y cos? ¥ - (300)

P 4
AN

Substitut;;ingﬁ = 90° we get : w, means the angular velocity along the equator
- (on the surface), whereas the angular velocity at the poles is :

1282,5 »v
Wp =Wy ==,
cuori
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i. e. the polar angula,r velocity is less than the equatorlal one. ‘As the polar

angular velocity cannot be zero or a negatlve value, the subsequent inequality
must hold

2y
2 —.
| | w? > 12825 'ri ,
which, in the case of given parameters » and », affords the inferior limit
or w,. The value of the angular velocity is highest in the centre of the star :
| 89,41 Ry
W%
Expressions of Veloc1ty distribution may be essentially sumphfled if the mag-
netic field strength is not excessively great. For in accordance with (26)

W, = Wy -+

2 1
_ 15 H3 Hy 14 wg] 31)
» 7(5,7608)2 | xp %2 0> 15
If the magnetlc fleld is very weak, HZ/xp may be neghglble beside w,; and then
30 Wy 1
Yy = — % —=0,06238w,72, 3la
V 5,7608)2 o - G

"~ or let us indicate the equatorlal angular ifelocity by means of v, = w,ry,

and then we may write

v = 0,06238v,r,. ' (31b)
This formula affords us a further relation between the parameters It renders
possible. that the order of magnitude of » may be determined by the aid
of v, and 74 ; by dint of this order determined, the question whether the
internal friction has molecular or turbulent origin, will be settled. We are
able to determine the coefficient of molecular viscosity from the state of the
gas by the aid of molecular theory. According to this theory the kinematical

‘viscosity is about 107, for instance on the surface of the Sun. As to the coef-

ficient of turbulent \qscosﬂ:y, there is no acceptable theory at present. If we
are capable of estimating the average size of eddies and the mean value of
the velocity fluctuation, we obtain, by virtue of the formula »~ [p’|.|V]
an approximative value for the coefficient of viscosity. According to com-
putations of the kind the coefficient of viscosity on the surface of the Sun
is of the order of magnitude of 10!3. Equation (31b) expresses an impor-
tant connexion between turbulent viscosity and impulse momentum. In order
to verify this significant result of the present theory, we shall still return

to this question in what follows.
5.. Comparison with Solar Observations
5.1. Distribution of the angular velocity of the Sun

Having computed the distribution of angular velocity on the surface,
expressed by (30b) in relation to some star, let us substitute the solar radius
(re) for ry-; thus

: 1282, 5

W T

-%v cos? 9,

2 Csillagaszat
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~ which has identical form with that of the well-known emp1r1cal formula of
interpolation : ‘ :

2.105 0,4 105

® =" — cos? 9.
e o | ‘
By the comparison of the two formulae we obtain
2,0 - 105
a)o e
Yo
and
1282,5
0 o~ =0,4 - 105;
CO07'®
whence
xy 0,8 o
= 101075 = 4,366 - 1017, (32)
7‘@ 1282,5

%z and v may be determined from the connexionsbetween the parémeters
as well as from the streamings on the solar surface. Such computations
can be made by the aid of an adequate discussion of the meridional motions.

5.2. Meridional motions

The velocity. of the meridional currents on the solar surface can be
determmed from the vector potential %,. According to (8):

% _ /3,/, P<1)
or if (28) is improved, then : .
B, = 28 865w2P<21>; 7 (33)
from these the meridional components of the velocity are : |
57 73
r - "Png'a
T
28,87 Ax.
by = 5 (29, — 3yy,) P

If we suppose that the meridional drift of the sunspots gives the meridional
motion of the photosphere, b, may be directly calculated from the meridional
drift -of the sunspots, viz.

by =15 19,
where & is the angular velocity of the meridional drift :
$ = 2.107° radian per second,
whence | '

b, = 1,4. 10% cm/sec.
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The dlstrlbutmn of the velocity on the surface in accordance with the ’oheory is:

by = 27,60 —— P,
. O]
from this, if PP = 1(4 = 45°),

b, = 27,60 —— = 3,94 - 10710,
7’@ =

after ‘comparing this value with the empirical one, gained before, we obtain :
x = 3,75 - 1013, » (34)

the conductivity will be ¢ ~ 107. The molecular conductivity may be deter-
mined from the degree of ionization, according to which o = 102, Consequently
the coefficient of conductivity, deduced theoretically, cannot be interpreted
by the aid of the molecular theory, because the coefficient in question is
five orders of magnitude larger than that obtainable from the molecular
theory. A medium of such en exiguous conductivity has to be considered
as an isolator. Certain suppositions of the theory of hydromagnetic turbu-
lence indicate that in turbulence the mean charge transport of very large
space elements is very small; therefore turbulent electric conductivity
may be introduced, which is several orders of magnitude smaller than mole-
cular conductivity. From our discussion we may conclude that there must
be hydromagnetic turbulence in the Sun and that the coefficient, obtained
by means of (34), is one of -the characteristics for such a turbulent state, viz.
it is electric resistance in E. S. U.
From (32) and (34) also » may be determined :
y i 4366 o104 = 1,556 - 1015, ° (35)
3,57 .

This coefficient is two orders of magnitude larger than that deduced in
another way from the turbulence of the solar surface. For the determination
of » we have taken into consideration also the turbulence in the interior
of the Sun. Consequently we have to think -this deviation arises from the
circumstance that turbulence in the Sun’s interior is more vigorous than
that observable on this surface.

The coefficient of viscosity, however, may be determmed, on the ground
of (31b), also from the equatorial velocity and the radius: :

y = 0,06238.2.7.1010. 105~ 1055, (36)

This value shows a sufficiently good conformity with the above coefficient,
determining empirically, from which circumstance we are permitted to
conclude the correctness of the theory.

6.3. Distribution of the magnetic field

From our theory it has followed that the dipole momentum of the
external magnetic field is zero in first approximation. According to the obser-
vations the Sun has a dipole field, which is, however, so weak that the deter-
mination of its structure is very uncertain. Exact measurements cannot

2*
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be made but almost exclusively at polar areas, because under lower helio-
graphic latitudes the determination of the mean magnetic field is practically
impossible on account of the magnetic fluctuations of the sunspot zone.
' The theoretically obtained external magnetic field shows a certain deceptive
similarity to the dipole field. For the magnetic polarity at the North pole
is contrary to that at the South pole in the case of an octopole field as well
as in that of a dipole one. The lines of force emerging from the polar areas
are considerably curvated, and if & ~ 60°, they return into the Sun’s interior.
Therefore the polarity will be contrary here. From the environment of this
place also another family of lines of force arises with identical polarity and
having passed the plane of the equator, enters the surface in the area of
¥ = 120°, : L - :
According to the recent magnetographic measurements! the Sun’s polar
‘field can be observed only from the pole to & = 35° and from & = 145° to
¥ ='180°. In accordance with our theory the polarity of the field has to
change both at-about ¢ = 40° and ¢ = 140°. . :
‘ In what follows we may suppose that the magnetic field, observed
in the polar area, derives from the théoretically deduced octopole field.
If we assume that the field intensity at the poles be 1 gauss, we obtain :

. $ =—3312.12. H, =1,

. Whence , , .
: H, = — 0,002516. (37)
According to (29) the horizontal component of the magnetic field is :
$, = 957,9 Hyv 9, PY, '
. Wy 72

which we may simplify making use of (3la):
| o 9, = 59,74 Hyyp, PP,
or by the aid of the above value of H,: L
Dp = 1,50 p, P, (38)
The maximum of the magnetic field in the Sun’s interior, at the point given
by the coordinates » = 3,8 and ¢ = 45°, is: :

H.p max — O;‘i

consequently it is in order of magnitude equal to the polar field strength.
So from the point of view of hydromagnetic turbulence coming to pass in
the solar interior, it must have nearly as great an importance as that of the
meridional field. - -

6. Comparison with Stellar Observations

_ By means of spectroscopic observations of the stars only w, and H,
can be determined. Therefore, making use of the observations, we may
calculate only those parameters of our theory which depend on these two
quantities. :

1 Ap. J. 121, 348 (1955).
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If we assume, however that » be a very great number also in the stars,
in like manner as in the Sun 1. e. hydromagnetlc turbulences exist, then
(316) will hold here too :

y = 0,062’58 Dequlss ) (39)

of the correctness -of which we have convinced ourselves.

The correctness of (39), however, may be concluded from the com-
parison. of the turbulence and rotational velocity of some stars type B, A,
and F, on the ground of observations, or more properly, discussions of O.
Struve, C. T. Elvey, K. O. Wright, Su Shu Huang and others. For provided
that turbulent velocity is plopor’monal to » (or is a function of it), further-
more the observed velocity is equal to the equatorial one, and finally the
radii of the stars in question may be considered as equal (in reality they
are between 1—50),- we are permitted to compare relation (39) with the
observational results. ' ’

In the table below we have collected, using the literature at our dis-
posal, the turbulent velocity and the rotatlonal one of the stars type B, A,
and F, and also those of the Sun:

Star Type Vturb Litt. " Vrot Litt.
egLeo ........ ... BO 18 St, H " 61,8 H
aCMa ............. AO 2,0 St 15,6 H
a Lyr!.............. AO 2,0 St 15,6 - H
17 Lep . ..ovvvin.... AO 67,0 . St
aCyg.............. A2p 2,0 St 25,0 H
aCar............... FO 3,5 H . 15,6 H
€ Aur .............. F2 24,0 H 30,6 H
aPer .............. Fb 7,5 H o 15,6 H
aCMi.............. F5 4,0 H : 15,6 - H
a Cyg .............. F8 7,8 H
OCMa ............ F8 9,0 H

Sun .............. GO 1,9 . 2,0

(St = Struve, Ap. J. 79,409 (1939) ;' H = Su Shu Huang Ap J. 118,285 (1953).

By the aid this table fig. 1 has been drawn. As we may see, in it a certain
relation between the two quantities appears decidedly, but because of the
exiguous material of observation we get no satisfactory answer to its reality.
It would be very necessary to complete the matérial with further data of
those stars of fast rotation, the turbulent velocity of which is a,lso known
to us. -

7. Trajectories of the Velocity and Magnetic Field

It is not unknown that the trajectories of a vector fleld A = rot a,
are given by the following differential equation :

[rot a, ﬂ] = 0.
ds
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If only the @-component of the vector potential is different from zero,
the above equation written in polar coordinates will be :

1 ] do 1 o dr
—(sinda )r— + — —(ra,)— =0,
r sin 9 819( 2 ds+ r'ar( (p) ds '
which may be transformed into
! dr 9 do
—(rsinda) — + — (rsinda,) — = 0;
or ( ? ds 99 ( ? ds

after integrating
' a,r sin ¢ = const. _
According to (8) the vector potential of the meridional currents is
B, = fy.P3,
which, written into the above equation and somewhat transformed, is

. ry, (Py — P3) = C.

The family of the curves appertaining to the different values of C is shown
by fig. 2. We remark here that the selfsame family of curves produces also
the trajectories of the meridional electric currents, mentioned in Chapter 4.3.
These currents originate £, the trajectories of which are the concentric
circles running around the axis of rotation ; the equation of the circles in

question is :
' d3,
sy T | — 0:
[# 2]

after integrating :

(Dgs 35) =0

let us write it into polar coordinates :

The value of C varies from point to point in the meridional plane ;
the curve joining the constant values of C represents the meridional sections
of the force surfaces. This family of curves, as one may see it from the form-
ula, agrees as to the form with the trajectories of the meridional currents.

Instead of the trajectories of the velocity field let us examine the family
of surfaces of constant angular velocity. The equation of these may be easily
obtained on the ground of (30a):

2 ¥ '
L r | 5,7608 r .

The family of curves is shown by fig. 3.

The equation of the lines of force of the magnetic field is obtained
in a similar way as that of the meridional currents.

The equation of the lines of force of the internal magnetic field is :

(r2 4 133,03 ,7) PRP® — 199,54 p,r PO PP = C,
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that of the external field (octopole-type field) :

3,12 iP<11>Pg> —C.

the lines of force of the internal and external magnetic fields are ‘shown by
fig. 4. :

L4

Summary

We have determmed the velocity distribution of a star and its magnetic
field in first approximation. Our results are as follows.
Veloelty distribution :

- ~ b, = w,rPP 4 0,968 %7, (B4, PP — 29, PY).

Distribution of the angular velocity :

o = w, + 83,661 Y2 _ 58L9% ¥5
¥y ’7'* r -

82?9.-

. Vector potential of meridional currents :
B, = 28,866 %y, PY.

Vector potential of the internal magnetic field :

A, = Hyry % [L - 133,03¢1]P<11’ — 119,54y, PPl
) Iy
Vector potential of the external (octopole-type) field :

B 5 :
A, = — 0,6631 H, %Pg).

* Toroidal magnetic field strength :
9, = 59,74 Hyp, PP.

Appendix

1. The function ¥, used to solve the basic equations, is derivable from
the Bessel functions :

91 = 1= Ty, (Ar)

" and therefore recurrence formulé,e rules of differentiation and those of in-
tegration, relative to the Bessel functlons may be transformed also into .
The important recurrence formula is

214+ 1
Ar

Yi-1 + Y1 = Yr.
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Rules of differentiation :

d M A .
= -1 — ’
e 2a+1 7 21 T
1 A0+1) Al
r dr( Y= Y 2] 41 T
Integral formulae : ' *

1
JTHz’P! (Ar)dr = ry 2y,

,rl—l Tl-—-l

[wzdf Y

2. Tables for the functions v, (I =0, 1, 2, 3, 4). The functions y; may
be expressed by power functions and trigonometric ones :

sin &
Yo = ’
x
sin x cosS X
’P1= 9 - ’
xz xz
3 ; 3
P, = |[— ——|sinx ——cos 7z,
x3 x x3
15 6 . 15 1)
Yy =|— — —|sinx — |— — —|cos z,
‘ x? x 3 xz
. 105 45 1 . 105 10
Yy = —_—— 4+ —|smx — |—— — —|cos .
x5 ad xJ xt x?

In the neighboul:hot)d of x =0 we obtain the functional values by the aid
of the subsequent series: -

x 22 x? x2
T hoEh 21—
3 10[ +28( 54( o )
il 1 1 1 14+ .
ne s )
x3

2 ‘ 2
py = 1_L(1J__x_(1__,_),.

Y=

105 - 18 44
2 2

b= 121+ Z[1-..).
945 22 52

If x >20 4 1, then for calculating y; the following Trecurrence formula is
expedient :

21+ 1

Y1 — Y — ?/)z_+1-
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In what follows we give the numerical values of vy, v;, ¥,; 1/)3 and y,, of
which we have availed ourselves in the calculation.

® Yo Y . Pa - Vs L2
0,0 - 1,000 0,000 0,000 0,000 0,000 .
0,2 0,933 0,066 . 0,003 0,000 0,000
0,4 . 0,974 0,131 0,011 0,001 0,000
0,6 0,941 0,193 | 0,023 0,002 0,000
0,8 0,897 0,250 0,041 0,005 0,000
1,0 0,841 0,301 0,062 0,009 0,001
1,2 0,777 0,345 0,087 0,015 0,002
1,4 - 0,704 0,381 0113 | 0,023 - 0,004
1,6 0,625 0,409 - 0,142 0,034 0,006 .
1,8 © 0,641 0,427 ' 0,170 0,064 0,009
2,0 0,455 0,435 0,198 0,061 . 0,014
2,2 0,366 0,435 0,225 0,080 0,020
2,4 0,282 ’ 0,425 0,249 - 0,095 0,027
2,6 0,198 © 0,406 ' 0,270° .+ 0,113 0,035
2,8 0,120 0,379 0,287 0,133 0,045
3,0 0,047 . 0,346 0,299 0,152 0,056
3,2 — 0,018 0,306 0,306 _ 0,171 : 0,069
34 — 0,075 0,262 0,307 0,188 0,081
3,6 —0,123 0,215 0,302 © 0,205 . 0,096
3,8 - — 0,161 - 0,166 0,292 - . 0,218 0,110
4,0 — 0,189 0,116 0,276 0,229 0,125
4,2 — 0,208 0,067 0,256 . 0,287 0,139
4,4 —0,216. 0,021 0,230 0,241 0,153
4,8 — 0,208 — 0,062 0,169 ' 0,238 . 0,177
5,0 — 0,192 — 0,095 : 0,135 0,230 0,187
5,2 —0,170 —0,123 0,099 . 0,218 0,194
5,4 — 0,143 — 0,144 0,063 0,202 0,199
5,6 —0,113 —0,159 . 0,028 0,183 0,201 -
5,8 — 0,080 — 0,167 — 0,006 0,161 0,201

Particular functional values :

the first zero of v, : 2 = 4,4936
the first zero of p,: x, = 5,7608

corresponding values at the first zero of ¥, :

vo (%) = — 0,0866 -y, (%) = — 0,166
g (%) = 0,166 Y, (%) = 0,201,

Budapest-Szabadsaghegy, 15th. June, 1955.

John G. Wolbach Library, Harvard-Smithsonian Center for Astrophysics ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?%3F%3F%3F%3FCoKon0037&amp;db_key=AST

