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PREFACE

The subject of multimode stellur pulsation has become one of the the most in-
tensively studied fields of variable star astronomy. It is not difficult to list the rea-
sons why this is so. The reasons are:

(i) development of data acquisition systems and data analysis has given us effi-
cient tools for studying the temporal variation of the light and/or radial velocity of
various types of pulsators.

(i) A very large portion of the observed pulsators have proved to be multi-pe-
riodic, and it is quite possible that in certain types of pulsators (Sun; white dwarfs,
Delta Scuti and rapidly oscillating Ap stars) this is the usual (and maybe the only)
way of pulsation.

(iii) In almost all cases the time variation ean be represented by the finite Four-
ier sum of constant amplitudes and phases. This fact makes variable star astronomy
feasible since, by a mere increase in the duration of the observations, we are able
to achieve a greater accuracy and, eventually, resolve the Fourier spectrum.

(iv) Since the linear nonadiabatic eigenmode frequencies usually give an ade-
quate representation of the observed frequency spectra, very important information
on the internal structure of the pulsators can be inferred without resorting to the
unsolved problem of nonlinear nonradial pulsation.

(v) The great progress in the powerful application of the methods of seismology
and pulsation theory to the Solar data has led to the recognition of the possibility
of applying the methods to other multimode pulsators.

(vi) The testing of the internal structure of stars through their pulsational
frequencies (i.e. stellar seismology) is the only way to understand the internal consti-
tution of the individual stars. Of course, this also leads to other data of astrophysi-
cal and cosmological interest (i.e. better estimation of the chemical composition,
information on the elementary particle processes in the stellar core, convection in
stars, rotation, magnetic field, etc.).

Despite the promising progress achieved in some fields of multimode stellar
pulsation (e.g. white dwarfs, rapidly oscillating Ap stars but especially the Sun), there
remain plenty of unanswered problems which keep everyone busy working on stel-
lar pulsation. Without attempting to provide comprehensive details, here we should
like to list only a few outstanding problems. '

Strictly speaking, our first attempt to utilize double-periodic stellar pulsation to
obtain better stellar parameters has failed. We still do not know the reason for the
mass discrepancy of the beat Cepheids nor, on the whole, why nonlinear pulsational
stellar models are unable to model sustained double-periodic pulsations as observed
in the case of beat Cepheids, dwarf Cepheids and RR Lyrae stars. In general, though
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some progress has been made during the past few years mostly in the phcnuménn—
logical interpretation of nonlinear stellar pulsation, much more work is needed both
on the mode coupling theory and on the development of the nonlinear pulsation
codes. The difficult problem of the hydrodynamic modelling of nonlinear nonradial
pulsation is probably attackable in the not very distant future, due to the rapid
development of supercomputers.

It is clear that in the overwhelming majority of the multimode stellar pulsators,
finite amplitude pulsation is established by nonlinear etfects, consequently nonlinear
theories are indispensable in understanding their basic behaviour.

The situation in the field of the linear pulsation theory is better, though prob-
lems like the excitation mechanism of the pulsations of Beta Cephei and Ap stars
and the Sun, and the pulsation-convection interaction are still unsolved.

As to the observations, besides the discovery of further multimode variables, it
is immensely important to study the individual objects in detail. Long base inter-
national observations have already been made in the case of the Sun, white dwarfs
and rapidly oscillating Ap stars but little is known about the small amplitude Delta
Scuti stars, which constitute the overwhelming majority of these variables. Finally, we
mention that for long period variables such as W Vir, RV Tau, semiregular and Mira
variables, the basic question whether they are multiperiodic or chaotic is still unan-
swered, mainly because of the paucity and poor quality of the available data.

International conferences on various types of variable stars are organized al-
most every year. Because of the rapid development in the study of solar oscillations,
experts on this and related fields gather especially often. The last international con-
ference focusing on multiperiodic stellar oscillation, however, was held (in Budapest)
more than 10 years ago. Since that time considerable progress has been made both
in the theory and observations, which explains the timeliness of the present work-
shop.

It is a pleasant duty to acknowledge the financial support of the Committee of
the International Theoretical Physics Workshop (NEFIM) operated in the Central
Research Institute for Physics of the Hungarian Academy of Sciences, and the help-
ful assistance of Mrs. Emilia Szab6, the secretary of this organization. The active
cooperation of the Scientific Organizing Committee: J. Robert Buchler, Jorgen
Christensen-Dalsgaard and Wojtek Dziembowski meant a considerable contribution
to the successful organization of this workshop. Mr. Harvey Shenker is thanked for
the linguistic revision, and Mrs. Eva Végviri for her painstaking camera ready typ-
ing. We are grateful to Mrs. llona Kédlman for the excellent arrangements during the
meeting.
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MULTI-MODE PULSATION IN CEPHEIDS AND OTHER SUPERGIANTS

L. Szabados
Konkoly Observatory, Budapest, Hungary

Abstract

The pulsating supergiants with more than one excited mode include
the beat Cepheids, the bump Cepheids of both populations, as well as
some other pulsating variables in which mode switching occurs, e.g. RV
Tauri stars, UU Her variables, R CrB variables, and other peculiar stars.
The recent results concerning their multi-mode behaviour, both obser-
vational and theoretical are reviewed.

1. Beat Cepheids

The small but important group of beat Cepheids is still a mistery and no spec-
tacular progress has been reached since Balona's (1985) review. There are, however,
some results to be mentioned.

EW Scuti turned out to be a new member of this group (Cuypers 1985). Its
fundamental period is almost the longest (5.8 days) and the period ratio of the two
co-existing modes is in accordance with the typical values of other beat Cepheids.
Moreover, its recent spectral classification resulted in a spectral type of F8 II (4n-
tonello, Mantegazza and Poretti 1987), while the out-of-date spectral type given in the
GCVS is KO0.

CO Aur is not a new member but its membership among the double-mode
Cepheids has been questioned (Balona 1985). As a matter of fact, its periods give
a ratio quite different from the typical values for beat Cepheids. When revealing the
double periodicity, Mantegazza (1983) interpreted those as the simultaneously excited
first and second overtones. This conclusion has been confirmed in three more recent
papers: Fuhrmann, Luthardt and Schult (1984) analysed the light variation of CO Aur
using the Sonneberg plate collection, Antonello, Mantegazza and Poretti (1986) per-
formed new photoelectric measurements, while Babel and Burki (1987) published both
photoelectric radial velocity and photometric data.

The number of known beat Cepheids in our galaxy now totals 13. Table I con-
tains some basic information on each of them. The respective columns contain the
following data: the name of the star; the value of the fundamental period; the ratio
of the two periods; the ratio of the respective amplitudes of the light variation; the
ratio of the amplitudes of the radial velocity variations; and the remarks. It is clearly
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seen from these data that although the amplitude of the light variation in the first
overtone is usually less than the light amplitude of the fundamental mode pulsation
(AX Vel is the only exception), the ratio of the amplitudes is not much less than
unity. In this respect the question whether there exist double-mode Cepheids with a
very small amplitude secondary oscillation is of importance both from observational
and theoretical points of view. The proposed candidates for slightly modulated pul-
sation are the Cepheids AS Cas (Henden 1980), EU Tau (Gieren 1985; Gieren and
Matthews 1987), and EV Sct (Mermilliod, Mayor and Burki 1987). Extensive photo-
metry of these stars would certainly help solve this puzzling situation.

Table 1. Double-mode Cepheids

Name Py P1/P0 Q&Vh/@&Do '(Aggyawpo Remark
CO Aur 1?78301 0.8008 0.178 0.20 1§
TU Cas 2.13931 0.7097 0.353 0.49
U TrA 2.56843 0.7105 0.421 0.51
VX Pup 3.0109 0.7104 0.867 1.43
AP Vel 3.12776 0.7033 0.502 0.74
BK Cen 3.17387 0.7004 0.433 0.76
UZ Cen 3233435 0.7064 0::227 0.42
Y Car 3.63981 0.7032 0.451 0.61 2
AX Vel 3.67317 0.7059 1.276 2.08
GZ Car 4.15885 0.7054 0.573 1.34
BQ Ser 4.27073 0.7053 0.585
EW Sct 5.8195 0.6984 0.815
V 367 Sct 6.29307 0.6967 0.958 3
Remarks:
1. P1 and Pz are excited instead of Pg and P;
2. Binary

3. Cluster member

The data concerning CO Aur are taken from Babel and Burki (1987); BQ Ser: Balona
and Engelbrecht (1955); EW Sct: Cuypers (1985); the other stars: Balona (1985), where
the error of the entries is also listed.

Since the double-mode Cepheids are normal Cepheids, one would expect them
to exist in the Magellanic Clouds, too. Apart from one not very convincing example
(W3 in LMC, with a period probably less than one day — Connolly 1982), other
searches failed to find extragalactic beat Cepheids. This situation is now changed.
Andreasen (1987) reported that he had succeeded in finding one Cepheid in LMC
(HV 2345) with two simultaneous periods.
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The problem of He emission in beat Cepheids is another important but still
unanswered question. Barrell (1978) found Ha emission of varying strength in seven
out of nine beat Cepheids when spectroscopic observations were made during the
ascending branch or the maximum of the light variation. Later on (Balona 1985)
these emissions were attributed to an instrumental effect and, similarly, no Ha emis-
sion was found in TU Cas (Henden, Cornett and Schmidt 1984). Upon my request a
spectrum of TU Cas covering the red region including the Ha line was taken by
Drs. K.P. Tsvetkova and L. Iliev with the coudé-spectrograph of the 2-m telescope
in Rozhen (Bulgaria) on 23/24 November 1983 (mid-exposure: J.D. 2444662.430). The
profile of the Ha line is shown in Figure 1. A weak emission in the core can clearly
be seen. This line profile recalls that of VX Pup published by Barrell (1978). When
the emission was observed, TU Cas was near its minimum brightness. The presence
of this emission means that such emissions can occur in beat Cepheids - at least in
certain phases — and the behaviour of the Ha line in double-mode Cepheids deserves
further attention. It is difficult to predict the proper phases if one wants to observe
emission, because Barrell (1978) did not publish the phases according to the over-
tone (or the beat period). The emission found by her occurred mostly between the
phases 0.75 and 0.10 if the zero phase corresponds to maximum light in the primary
pulsation period. The only exception is Y Car where the Ha emission was observed
at phases 0.13 and 0.69 of the fundamental period. Y Car might, however, be an
atypical beat Cepheid because it is a component of a binary system (Stobie and
Balona 1979). Due to the proximity of the companion to the pulsating atmosphere
of the Cepheid (the projected orbit has a value of a sini = 10® km — Balona
1983), emissions due to mass transfer cannot be excluded during the phases when
the single beat Cepheids are not able to produce an emission.

An interesting relationship between the period and a parameter based on the
observable amplitudes of the beat Cepheids can be revealed with the help of the
data gathered in Table I. The parameter mentioned is the ratio of the amplitude ra-
tios AR = AV/Av; for the overtone and the fundamental periods, where AV is the
amplitude of the light variation and avr is that of the radial velocity variation. When
plotting AR1/AR vs. the fundamental period (subscript 1 denotes the first overtone,
0 refers to the fundamental mode variations), a systematic decrease of this ratio
toward the longer periods is seen (Figure 2). The error bars are rather large due to
the error propagation, therefore it would be extremely important that the three
longest period known beat Cepheids be included in the diagram. To this end radial
velocity observations have to be performed since the light amplitudes of BQ Ser,
EW Sct, and V 367 Sct are more or less accurately known. If the effect is real, it
can be interpreted that in the case of two simultaneously excited modes the relative
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Fig. 1. Profile of the Ha line of TU Cas. The scales are arbitrary on both axes.
The emission in core is clearly visible.
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Fig. 2. Ratio of AVyAVqn and (Ave)1/(Avi)o vs. the fundamental period (for
detailed discussion, see text).
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importance of the overtone diminishes with increasing period, as far as the light var-
iation is concerned. In other words, there is some effect working in these stars which
allows' the periodic displacement of the atmospheric layers by the overtone period
but inhibits the accompanying light variations. This trend of the amplitude ratios
gives a plausible explanation for the fact that the beat phenomenon in Cepheids is
confined to the fundamental periods shorter than about six days, but nothing can be
said about the underlying physical process. The linear least squares fit to the data
points in Figure 2 resulted in the formula:

AR1/ARp = -0.150 Po + 1.120
+.042 #5131

CO Aur has been treated here as if it were a fundamental and first overtone pul-
sator. For the time being the above relationship is only suspected, its reality needs
to be supported by additional or higher accuracy data.

In addition to the radial velocity observations, in most cases we are in need
of new, high quality photometric data, too. The list of recent papers that contain
photometric observations of "bona fide" double-mode Cepheids is very short: Moffett
and Bames (1984) (TU Cas, VX Pup, V 367 Sct, BQ Ser), Balona and Engelbrecht
(1985) (BQ Ser). The problem of secular photometric amplitude variation (changes
in modal amplitudes), phase jitter of the overtone, additional periodicities (see Balona
1985, and references therein) can only be solved with new observational data.

The long period (1400 days) modulation of both the light and radial velocity
curves of V 473 Lyrae (=HR 7308) is unique among the Cepheids. Based on the
period ratio, its classification as a double-mode pulsator can be excluded. The pul-
sation period of 1.491 d is stable but the amplitude of pulsation varies by at least
a factor of 15. When the amplitude is at minimum, the shape of the radial velocity
curve is simply sinusoidal, and it becomes asymmetric with increasing amplitude.
Under the hypothesis that the star is a classical Cepheid, its radius (>30 R@) im-
plies radial pulsatfon in a high (at least the 2nd) overtone. However, the possibility
that the star is a Population Il Cepheid of lower pulsation mode cannot be ruled
out (Burki et al. 1986), although V 473 Lyrae shows normal solar abundance. The
star is situated to the red of the instability strip and this fact also increases our con-
fidence in the hypothesis by Auvergne (1986) who calculated the instability of the
limit-cycle in a one-zone model, as a possible explanation of the strange modulation
of V 473 Lyrae.
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2. Resonances in Bump Cepheids

Bumps in the light curves are now interpreted as the result of near resonance
between the fundamental mode and the second overtone periods as discussed by
Simon and Schmidt (1976). The resonance is clearly seen when the light and/or radial
velocity curves of classical Cepheids are decomposed into their Fourier components
(Simon and Lee 1981; Simon and Davis 1983; Simon and Teays 1983; Simon and
Moffett 1985). The light curves of the small amplitude Cepheids have been Fourier
decomposed by Antonello and Poretti (1986). The same authors (1987) found that
unlike the classical Cepheids, where the resonance condition Py/Pg = 0.5 is fulfilled,
the s-Cepheids are subjected to a resonance between the third overtone and the fun-
damental mode, or if the small amplitude Cepheids are first overtone pulsators, then
the fourth overtone is in resonant mode coupling with the lower harmonic, i.e. P4/P;
= ().5.

The Hertzsprung sequence of the light curve shapes, seen so well for the clas-
sical Cepheids (with periods between about 5 and 15 days), and for the small ampli-
tude Cepheids (with periods between 2 and 8 days), shows up for the lower mass,
Population II Cepheids, as first noticed by Stobie (1973). Recently, a number of stu-
dies were performed where Fourier decomposition was applied to the light curves
of BL Herculis type variables (Petersen and Diethelm 1986; Simon 1986; Petersen and
Andreasen 1987; Carson and Lawrence 1987), but there is disagreement in the seem-
ingly simple problem of where the resonance centre (i.e. P2/Po = (.5) occurs. The
values 1.6 days and 2.0 days have been deduced in the literature.

According to Fokin (1986), the mechanism leading to the appearance of the
bump is evidently complex and includes not only resonant excitation of the second
overtone but also generation of a travelling wave (or pulse). In their latest paper on
stellar acoustics, however, Aikawa and Whitney (1985) conclude that the mode-reso-
nance is a more apt description of the bump phenomenon instead of the simul-
taneous presence of the pulse resonance and the mode-resonance.

The non-linear hydrodynamic models calculated by Fadeyev and Fokin (1985)
revealed the resonance Pg = 2.Py for the W Vir models with a period of 10 days
and longer. This resonance causes the flat top on the light curve at a period of 10
days and appearance of a shallow alternating minimum at longer ‘periods as is ob-
served in the RV Tauri variables. In their recent models, Buchler and Kovics (1987)
have demonstrated that the hydrodynamic behaviour of radiative W Vir models shows
a typical period doubling sequence leading to chaos, with the effective temperature
being the control parameter. These latter models involve two types of third order
resonance.




3. RV Tauri and Related Supergiant Variables

The first attempt to model the occurrence of the alternating deep and shal-
low minima in RV Tau stars as a result of resonance between the fundamental mode
and the first overtone was made by Takeuti and Petersen (1983). The linear adiabatic
theory, however, was unable to give the overall explanation of RV Tauri pulsation
properties because of strong non-adiabatic and non- linear effects. The most prom-
inent feature of the non-linear pulsation model calculated by Fadeyev (1984) is that
the innermost layers oscillate as a standing wave whereas the oscillations of outer
layers occur in the form of running waves. The ratio of the frequency of the stand-
ing wave to that of running waves is about 2. This fact leads to an alternation of
deep and shallow minima in the kinetic energy and radius variations and it explains
the nature of RV Tauri variables.

Linear, non-adiabatic pulsation models including convection have been developed
by Worrell (1987). Only those RV Tauri stars could successfully be modelled in which
the alternation of deep and shallow light minima continues without reversal over
many cycles. The overwhelming majority of RV Tauri variables, however, is not as-
sociated with the critical period ratios (e.g. P1/Po=1/2).

The models calculated by Buchler and Kovdcs (1987) are able to simulate the
RV Tauri phenomenon at certain effective temperatures. It is interesting to note that
this behaviour could be achieved by neglecting convection.

From the observational point of view, the difficulty is that extensive series of
observations covering long time intervals are not available in the literature. The only
detailed study of an RV Tauri variable is that of V 453 Oph (Mantegazza 1985). For
this star, the complex light variation could be decomposed into a few periodic terms.
Three of these terms are exactly in integer ratios but they are not Fourier harmon-
ics of the same wave, i.e. they are resonant independent waves. Moreover, some of
the terms are split into two which could indicate the presence of non-radial pulsa-
tions. Analysis of the light curves of other RV Tauri variables is still inconclusive
(Mantegazza 1986).

There is one more interesting observational fact concerning multiple periodicity
in RV Tauri stars, viz. the periodic (or cyclic) variability of the mean light of RVb
stars. The relationship between the fundamental period and the long-term modula-
tion is surprisingly linear (Fokin 1984). Somewhat similar behaviour but with a differ-
ent slope can be seen in the corresponding diagram for the doubly periodic semiregular
variables of spectral type M (Fokin 1984).

Mode switching and resonance can occur in red variables. Small amplitude sec-
ondary periods of length twice the primary pulsation period, which can be explained
in terms of a Pp=2P; resonance between the first overtone and the fundamental
mode, have been noted in some cases (Wood 1981). An example of gradual switch-
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ing from mode to mode over many pulsation cycles is the SRd variable Z Aur. This
transition might correspond to a switching from P3 to P2 (Wood 1975). The pulsat-
ing component of the ¢ Aurigae system shows a number of simultaneously present
periods (Arellano Ferro 1985; Kraus et al. 1987).

There are some F-type, Cepheid-like supergiants in the halo with interesting
properties (Sasselov 1985): roughly normal composition, yet these stars are found at
high galactic latitudes; small amplitude and long period light variation; two (or three)
distinct, alternating modes switching from one to the other, with a shorter interval
of erratic fluctuations in between; short standstills, i.e. unpredictable abrupt cessa-
tion of pulsation for a couple of months. Their classification as a separate type of
variables has been proposed by Sasselov, but in the GCVS the prototype stars (UU
Her) itself is classified as an SRd star, with the remark that its light curve resembles
that of RV Tauri variables. Another recent common practice is to refer to them as
89 Her stars (Arellano Ferro 1984; Worrell 1986) —~ though the variable star name V
441 Her has long been assigned to 89 Her. Curiously enough, V 441 Her is also
classified as an SRd star in the latest edition of the GCVS.

The mode switching is best seen in HD 161 796 (=V 814 Her). In 1979/80
the star had two non-simultaneous pulsation periods of 62 and 43 days, while in 1984
the periods were shorter: 54 and 38 days but their ratio has remained the same
(Fernie 1986). As Fernie noted, the modes do not represent the fundamental and
first harmonic modes, they are rather non-radial modes. It is worth mentioning that
the star is able to switch on its pulsation instantaneously at full amplitude with no
growth being visible. On the basis of pulsational calculations the low mass (and highly
evolved star) hypothesis is preferred (Worrell 1986: Zalewski 1986) but the spectro-
scopic binary nature of V 441 Her (Arellano Ferro 1984) would imply a high mass
(=20 M) for this supergiant star.

The case of V 810 Cen is unique. In this long period Cepheid- like star (Sp:
G0 Ia; according to the GCVS the star belongs to the SRd type) there are five
frequencies necessary to describe the observed variation in V light (Burki 1984). The
periods involved are: 80, 105, 133, 182, and 476 days. The largest amplitude belongs
to the 105 day oscillation. If the 182 day period corresponds to the fundamental
mode of the oscillation, then the observed period ratios Pi/Po for overtones are as
follows: P1/P=0.73, PyP,=0.58, PyP,=0.44, while theoretical prédicti()ns give the
values 0.74, 0.57, and 0.46 for these ratios respectively. This is the only known su-
pergiant star which pulsates in the first four radial modes simultaneously (Burki 1984).
This interpretation, however, needs further confirmation.




4. Other Supergiants

Multi-mode pulsation is also present in the rapidly rotating B supergiants (Maeder
1986, and references therein), e.g. y Arae. The line profile variation of this star pro-
vides convincing evidence of stable non-radial pulsations. Baade and Ferlet (1984)
found two stable periods of non-radial pulsations P1=0.87 d and P2=0.17 d iden-
tified as corresponding to two sectorial modes. :

The R CrB variables falling into the instability strip form a distinct group of
pulsating supergiants. Their pulsation period is near 40 days (RY Sgr: 38.6 d, R CrB:
44 or 49 days, UW Cen: 43 days - Feast 1986). S Aps now has a pulsation period
near 40 days, although it used to pulsate with a period of 120 days (Kilkenny 1983).
This may be due to a change from the fundamental mode of pulsation to an over-
tone. The period change analyses of pulsating R CrB stars performed by Kilkenny
(1982), and Kilkenny and Flanagan (1983) suggest that these stars are evolving from
red to blue in the HR diagram. According to theoretical results (Saio and Wheeler
1985) rapid mass loss occurs in the low effective temperature region, if the mass is
less than 1.6 M@. The decrease of the envelope mass would increase the effective
temperature of the star. Since the amplitude of the pulsation decreases rapidly as
the effective temperature increases, the mass loss rate may be reduced as the star
travels bluewards. This suggests that the rate of blueward evolution is slower in a
higher effective temperature region in the HR diagram which may explain the fact
that the pulsating R CrB stars are crowded around T~7000 K, or period ~ 40 days.
The mode switching of S Apodis discovered by Kilkenny (1983) can also be con-
sidered as a result of the blueward evolution, if the overtones become more domi-
nant at higher temperatures.

Just the opposite direction of evolution characterizes the peculiar supergiant
variable FG Sagittae, the central star of a planetary nebula. This star has been pul-
sating since the sixties with enormously rapid increase in the period. Changes in its
spectral type and effective temperature also give evidence of rapid redward evolu-
tion in the HR diagram (Jurcsik and Szabados 1981, and references therein). Accord-
ing to the nonlinear, radial pulsational model computed by Aikawa (1985a,b), FG
Sge started its pulsation in the third overtone mode when entering the instability
strip from the blue side, then a mode switching might have occurred to the fun-
damental mode. Aikawa‘s theoretical light curve shows a sub-structure that would
correspond to the interaction of the third overtone with the fundamental mode pul-
sation. Such a pattern of the light curves of FG Sge was observed in 1970 (Jurcsik
and Szabados 1981). The effective temperature of FG Sge, however, was higher in
1970 (~8000 K) than the theoretical value at which the mode switching was expected
to occur (between 6000 and 5400 K).
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A word of warning is appropriate here: Harmanec (1987) showed that the in-
terpretation of the observed semi-periodic light or radial velocity variations of super-
giants in terms of (non-radial) pulsations is not as straightforward as is often believed.
He demonstrated that the observed semi-period — luminosity - colour relationship can
also be derived under the assumption of orbital motion in a binary system. There-
fore it cannot be excluded that some of the variable supergiants are in fact contact
or nearly contact more massive components of unrecognized binary systems of low
mass ratio. The existence of multiple periodic supergiants, however, serves as a con-
vincing evidence in favour of the explanation of their variation in terms of pulsation,
keeping in mind that Harmanecs hypothesis cannot be ruled out in some other su-
pergiants.
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ous support from the Dudley Board and hospitality at the Department of Physics,
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PULSATION TYPES IN MAGELLANIC CLOUD CEPHEIDS

J. O. Petersen and G. K. Andreasen
Copenhagen University Observatory, Copenhagen K, Denmark

Abstract

The occurrence of different types of Cepheid pulsation in the Magel-
lanic Clouds is studied by means of Fourier decompositions. Comparison
with results for Cepheids in the Milky Way confirms the similarity in pul-
sation properties in these stellar systems. Double-mode Cepheids are shown
to occur in LMC, and s-Cepheids and Type II variables are briefly dis-
cussed.

l.lntroduction'

In recent years the theoretical understanding of modal selection and multimode
pulsation has been much improved by application of modern methods for analyzing
general non-linear systems (e.g. Buchler and Kovdcs, 1986; Takeuti 1984). The best
observational material for testing these theories is the large number of available in-
vestigations of pulsation properties of Cepheid variables. Comparison of pulsation
properties of Cepheids in the Galaxy and in the Magellanic Clouds can be expected
to give interesting new possibilities for such tests, as the metal content of the stars
in the Clouds is considerably smaller than typical galactic values.

While the pulsation properties of Cepheids in the Milky Way system are rela-
tively well studied, and several Cepheid groups of different pulsation types have been
identified, the material available for the Magellanic Clouds is more sparse and much
more uncertain. We have started a systematic discussion of the available photographic
light curves of Cepheids in the Clouds, using Fourier decomposition techniques
(Andreasen and Petersen 1987; Andreasen 1987, 1988). Due to the relatively low ac-
curacy of these data, it is essential to take uncertainties calculated for individual
Fourier parameters into account in the analysis. Here we will discuss the occurrence
of different pulsation types in Magellanic Cloud Cepheids, making a comparison with
the well established pulsation types in the Milky Way.
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2. Pulsation types in the Milky Way system

Let us start by summarizing the situation in our Galaxy (see Table 1),

The vast majority of the classical Cepheids (Type I) clearly oscillate in the fun-
damental mode and follow the Hertzsprung progression sequence with a center pe-
riod of about 10%. The Fourier diagrams show a great regularity along this sequence,
especially for periods gt (e.g. Simon and Lee 1981). Simon (1987) emphasizes that
this regularity argues strongly against the presence of any mechanism (e.g. He-poor
winds or significant mass loss) which increases the physical complexity of stellar evo-
lution.

Table 1. Pulsation types of Cepheids in the Galaxy and in the Magellanic Clouds.
The first three columns give information on physical properties of three galactic
Cepheid groups and the next three columns summarize their pulsation characteris-
tics. Fundamental and (first) overtone oscillation modes are indicated by F and O,
respectively. When a Hertzsprung-type progression sequence is known/suspected, the
center period is given. The last two columns give present status with respect to es-
tablishment of the occurrence of the relevant pulsation type among Magellanic Cloud
Cepheids and the presence of a progression sequence. Results marked by a colon
need confirmation.

Milky Way System Magellanic Clouds
Name of Age Mass Pulsation Modes Center Type Pro-
variables CLoZy ) () type period known gression
Classical <1 >4 Normal C6& F 103 Yes  Yes
Cepheids S-type F/0 350 Yes: No

Type I Double-mode F+0 - Yes -

Type II 5-15 0.5-0.6 BL Her and F 195 Yes No
Cepheids W Vir

Anomalous ? 1-2: Anomalous F/0 ? Yes: No
Cepheids

Several theoretical studies have explained the Hertzsprung progression by the
resonance I!2/llp = 0.5 at about 104, We note that present standard stellar models
predict this resonance at somewhat higher period, and that homogeneous standard
models also fail to give the observed period ratio = 0.70 for the double-mode
Cepheids. Simon (1987) suggests opacity changes as the proper explanation.

Recently, Antonello and Poretti (1986) discussed the structural properties of the
light curves of s-Cepheids. A well defined sequence with a discontinuity in the Four-
ier phase diagram at 34 was found. An attractive explanation could be that all s-type
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Cepheids oscillate in the first overtone and that a resonance (e.g. llgIl1 = 0.5) oc-
curs at 39, However, according to Antonello and Poretti, most s-Cepheids probably
oscillate in the fundamental mode rather than in overtones.

The double-mode Cepheids have been discussed in numerous papers (e.g. Balona
1985). As mentioned above it is still not possible to reconcile the observed period
ratios with the properties of generally accepted standard stellar models.

The observed properties of Type II Cepheids agree remarkably well with theoreti-
cal predictions from standard stellar pulsation and evolution theories (when a sui-
table mass loss in the red giant stage is introduced). In contrast to the case for
classical Cepheids the observed period ratios of RR Lyrae variables here provide an
accurate mass determination in agreement with other kinds of information (e.g. Cox,
Hodson, and Clancy 1983). Petersen and Diethelm (1986), and Carson and Lawrence
(1987) find the center period of the bump progression sequence at 1. 5 while Simon
(1986) prefers an alternative interpretation with a center period of 2d

Besides the above mentioned Type I and Type Il Cepheids anomalous Cepheids
have been discussed in the literature (e.g. Zinn and King 1982). Anomalous Cepheids
are known in SMC and in a few dwarf elliptical galaxies. The (possible) existence
of this group is predicted by stellar evolution theory, but only one or two (V19 in
NGC 5466 and perhaps XZ Ceti) seem to be known in the Milky Way.

3. Pulsation types in the Magellanic Clouds

Using Fourier decompositions for analysis of about 250 LMC and SMC Cepheids,
we have shown that the basic pulsation properties are very similar in the Clouds and
in the Milky Way system (Andreasen and Petersen 1987, Andreasen 1988). For the
interesting period interval 29.9¢ the well defined Hertzsprung sequences are virtually
identical, the progression center occurring at a slightly larger period in the Clouds.
For periods longer than 119 we find no significant differences.

The fact that stars in LMC have the same (known) distance, give new possi-
bilities for discussion of the s-Cepheids. The period-luminosity diagram (Fig. 3 in
Andreasen and Petersen 1987). give some evidence for the hypothesis that most of
the s-Cepheids in LMC of periods less than 99 are first overtone pulsators. However,
since our sample contains only 7 stars in this group, this result needs confirmation;
and the rather uncertain Fourier phases give no possibility for discussion of the pre-
sence of a progression sequence.

In the Galaxy almost one third of the Cepheids with period 29.49 are double-
mode pulsators. If the double-mode Cepheids constitute the same fraction in the
Clouds, they should contain many (> 100) such objects. As far as we know, none
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has been reported in the literature until now, and this has been ‘considered a strange
fact.

Searching the LMC sample, Andreasen (1987) discovered two stars which can
safely be identified as double-mode Cepheids. Thus the present studies indicate that
although double-mode Cepheids do occur in LMC, their relative abundance is much
smaller in the Clouds than in the Galaxy. However, this result is based upon pho-
tographic light curves containing only about 40 observations each, and therefore needs
confirmation.

The LMC and SMC samples considered in our investigations do not seem to
contain Type Il Cepheids. They should show conspicuous deviations from the P-L
relation for Type I. We do not find stars with the deviation expected for Type II
Cepheids. In principle, Fourier parameters could also be used for selection of Type
II variables. But this problem has not yet been addressed, even for the much more
accurate data available for galactic Cepheids.

We have not attempted discussion of anomalous Cepheids by means of the
Fourier decomposition technique. Probabiy the available observational material is too
sparse and too uncertain to allow a useful analysis.

4.Conclusion

We have started comparisons of pulsation properties of Cepheids in the Magel-
lanic Clouds and the Milky Way, making Fourier decompositions of photographic
light curves of about 250 Cepheids in LMC and SMC. We confirm the well known
similarities in basic Cepheid properties in these galaxies. Double-mode Cepheids -
for a long time expected to be present in the Clouds - were discovered in LMC by
Andreasen (1987).

Comparisons between period distribution and relative numbers of stars of differ-
ent pulsation types in the Magellanic Clouds and in the Milky Way indicate signifi-
cant differences. For example, we find fewer double-mode Cepheids in LMC and
SMC than expected from extrapolation of galactic data, and also Type II Cepheids
seem to be rare in the Clouds. We emphasize that much better observational data
is required for a secure decision of these important problems. :

The fact that Magellanic Cloud Cepheids have known distances gives new possi-
bilities for analysis of their pulsation properties. Therefore we expect future detailed
investigations of variable stars in the Clouds to yield both new insight in stellar pul-
sation and interesting information on the physical properties of stellar populations in
the Magellanic Clouds.
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NEW OBSERVATIONS OF THE DOUBLE-MODE CEPHEIDS AP VEL
AND BK CEN*

M. Jerzykiewicz
Wroclaw University Observatory, Wroclaw, Poland

Abstract

The uvby observations of AP Vel and BK Cen are presented and an-
alyzed. The wavelength dependence of the fundamental and first-overtone
amplitudes and mean epochs of maximum light is derived. In addition, on
the basis of all available data, the stability of the pulsations of AP Vel
and BK Cen is studied. No long-term variations of the component ampli-
tudes and periods are found.

1.Introduction

Although main observational properties of the double-mode Cepheids are quite
well known, especially since the extensive work of Stobie and Balona (19793, b), these
objects should still be observed from time to time in order to monitor the long-term
stability of the component oscillations. Ideally, all double-mode Cepheids should be
checked at regular intervals of several years. Such a program may, perhaps, be car-
ried out in the future. For the time being we selected for observing just two double-
mode Cepheids, AP Vel and BK Cen.

According to Stobie and Balona (1979b), the fundamental and first-overtone
frequencies of AP Vel are f0=0.319718+0.000010 c/d and f1=0.454578+0.000010 c/d.
The freqixencies of BK Cen are similar, fp =0.315073+ 0.000010 ¢/d and f; =
0.449848+0.000010 c/d. In both cases, the fundamental V light amplitude, amount-
ing to 07275+07007 and 07245+07013 for AP Vel and BK Cen respectively, is
about twice as large as the first-overtone amplitude,

* Based on observations collected at the European Southern Observatory, La Silla, Chile.
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2.0bservations

AP Vel and BK Cen were included in the Long-Term Photometry of Variables
project, a coordinated photometric program at the European Southern Observatory
(Sterken 1983). They were observed on eight runs, from January to March 1985 and
from November 1985 to July 1986, by means of the uvby photometers, attached to
the ESO and Danish 50-cm telescopes. The observers were: H. Duerbeck, O. Stahl,
A. Reitermann, F.-J. Zickgraf, M. Burger, A. Jorissen, H. Steenman, and R. Madej-
ski. As a rule, each star was observed once per bnight, AP Vel on 110 nights, and
BK Cen on 104 nights. The photometric reductions were carried out by J. Manfroid.
A description of the reduction procedure can be found in Manfroid and Heck (1983).

3. Analysis

3.1. Fourier Decomposition

The data selected for analysis consist of 114 differential uvby magnitudes, AP
Vel minus HR 3404, and 108 differential uvby magnitudes, BK Cen minus HR 4634.
Following Fitch (1966), we assume that the differential magnitudes can be repre-
sented by means of the double Fourier polynomial

Am=Ag+3jj Ajj cos [2=fjj(t-to) +dij] (1)

where fjj= |ifo+jf1|, with i and j being whole numbers such that i> 0 and
2+j> 0.

After a number of trial least-square fits to equation (1), we found that retaining
ten strongest sinusoidal components was sufficient to adequately represent the data.
As an example, parameters of a ten-component least-squares fit of the differential y
magnitudes of AP Vel are listed in Table 1.

A comparison of the differential y magnitudes of AP Vel with the synthetic
light- curve, computed using the parameters listed in Table 1, is shown in Figure 1.

The standard deviation in Table 1, equal to 07019, although quite small, is
much too large to be accounted for by the random photometric errors and the cu-
mulative effect of the neglected high order terms. As it turned out, the problem
can be traced to small systematic differences between the differential magnitudes,
obtained on different observing runs. The same problem was encountered in the case
of BK Cen. The origin of the systematic differences is, so far, unclear.




Table 1. The Ay variation of AP Vel: ten strongest components

Number of observations = 114 At = 516d
t, = JD 2446070.5

std. dev. = 07019 (original std. dev. = 0%231)
A, = 376125 010020

) PR | fij Aij ph of max.
1 0 0.319718 0%2775 * 0%0026 0.892 T 0.002
0 1 0.454578 0.1431 * 0.0026 0.411 * 0.003
2 0 0.639436. 0.0851 % 0.0026 0.623 * 0.005
1 1 0.774296 0.0555 £ 0.0035 0.160 L 0,010
2 1 1.094014 0.0364 £ 0.0038 0.794 * 0.015
1 -1 0.134860 0.0358 * 0.0026 0.295 * 0.012
3 0 0.959154  0.0312 & 0.0037 0.342:°% 0,019
0 2 0.909156 0.0232 t 0.0035 0.566  0.025
1 2 1.228874 0.0103 * 0.0037 0.319 * 0.054
1 -3 1.04401¢ 0.0100 * 0.0039 0.689 % 0.057
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Fig. 1. The differential y magnitudes of AP Vel, glotted as a function of phase
of the fundamental frequency, fo= 0.319718 c/d. Phase zero corresponds to JD
2446070.5 . Comparison star: HR 3404. The vertical bars represent deviations
from a synthetic ten-component light-curve, computed using the parameters listed
in Table 1.
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3.2 Amplitudes and the Mean Epochs of Maximum Light

The light amplitudes of AP Vel and BK Cen show a wavelength dependence.
For the two strongest sinusoidal components this is illustrated in Figure 2, where the
fundamental first-harmonic amplitude, A1o, and the overtone first-harmonic ampli-
tude, Aoi, are plotted as a function of the central wavelength of the uvby filters.

e.45 |- o a AP Vel

e.40 | o BK Cen

the uvby anmplitudes [magl

] | | | |

3see 4000 4500 5000 5500
central wavelength [A]

Fig. 2. The uvby amplitudes of the fundamental and overtone first-harmonics of
AP Vel and BK Cen, plotted as a function of the uvby central wavelengths.

The mean epochs of maximum light, which we shall use instead of the less fa-
miliar ¢ij, also show a wavelength dependence. This can be seen from Figure 3.

4, Stability of the Component Amplitudes and Periods

Using all available data, we investigated the long-term stability of the com-
ponent periods and amplitudes of AP Vel and BK Cen. In no case a significant var-
iation was found. For the sake of illustration, the results for the overtone first-harmonic
(that is, the sinusoidal component with i=0 and j=1) of AP Vel are displayed in
Figures 4 and 5. In both figures, the leftmost points were derived from the photo-
graphic observations of Hertzsprung (1936), taking into account the wavelength de-
pendences discussed in the preceding chapter. The filled squares correspond to an
assumed central wavelength of 4400 A for the Hertzsprung’s photometric system,
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Vel.

while the open squares, to \c =4200 A. The remaining points, from left to right, are
based on the observations of Mitchell et al. (1964), Pel (1976), Stobie and Balona
(1979a), and the present work. Each vertical bar is equal to twice the correspond-
ing standard deviation. The standard deviations of the amplitude and the O-C re-
sidual obtained from the data of Mitchell et al. (1964) are large because in this case
there were only 17 observations.

The horizontal straight line in Figure 4 represents the weighted mean Ao ampli-
tude. In Figure 5, the straight line indicates a correction of 0.0000032 = 0.0000007
c/d to the f| value of Stobie and Balona (1979b), mentioned in the Introduction.
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DOUBLE-MODE PULSATORS WITH UNUSUAL LIGHT CURVES

E. Antonello and E. Poretti,
Osservatorio Astronomico di Brera, Merate, Italy
and
R.F. Stellingwerf
Mission Research Corporation, Albuquerque, New Mexico, USA

Abstract

The case of the ultra-short period pulsating stars V1719 Cyg and
V798 Cyg is discussed taking into account the observational results and
the indications of the one-zone model. The He depletion in the envelope
is suggested as the possible cause of unusual light curve shapes of these
8 Scuti stars, but other observational and theoretical tests are needed.

1.Introduction

Generally, the (multi-) periodic pulsating stars such as RR Lyrae, high ampli-
tude & Scuti and SX Phoenicis stars, and Cepheids, have light curves characterized
by a rising branch steeper than the descending one. Recently, however, we pointed
out the unusual light curve shape of the double-mode pulsator V1719 Cyg (Antonello,
Mantegazza, and Poretti 1986a), which is characterized by a descending branch steeper
than the rising one. Also Johnson and Joner (1986) remarked this fact and made an
interesting photometric study which revealed several unusual features of this star.

Last year, starting a program for the observation of short period pulsating (5
Scuti and RR Lyrae) stars with high amplitude in order to confirm the existence of
two families of light curves for the & Scuti stars (Antonello et al. 1986b), the varia-
ble star V798 Cyg was observed. Also this star shows an unusual light curve similar
to that of V1719 Cyg. In the present note we will discuss briefly these two cases
which could represent a subclass of pulsating stars.

2. Data on V1719 Cyg and V798 Cyg

The analysis of the photometric observations of V1719 Cyg showed that it pul-
sates in two modes with periods of 0.267 and0.214 d, the period ratio being 0.80
(Mantegazza and Poretti 1986). Johnson and Joner observed this star in the Strom-
gren-Crawford photometric system, and pointed out the unusual behavior of the mi1
index. The authors considered two possible explanations: a) microturbulence excited
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Fig.1. V, B-V and U-B curves of V1719 Cyg for the first period. These curves
were obtained by subtracting the second period and the combination frequen-
cies from the original data (Poretti and Antonello 1987).
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Fig. 3. Color-magnitude diagram of the lower part of the instability strip with
the marked position of V1719 Cyg. The filled circles are 5 Scuti stars with light
amplitude AV< 0.3 and many observed pulsation ctycles, the open circles are
the other & Scuti stars with AV< 0.3. The sizes of the circles correspond to
different AV ranges. The crosses are & Scuti stars with AV= 0.3 (see Antonello
1983).

by the secondary pulsation mode which affects the metallicity index; b) Am/Fm phe-
nomenon, that is the star has metal abundance anomalies. V798 Cyg was observed
at Catania Observatory for three nights during an interval of seven days. From the
data analysis it resulted that the light curve of V798 Cyg is similar to that of V1719
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Cyg, and possibly it is another double-mode pulsator (see Figures 2 and 1 respec-
tively). Unfortunately, the data are not sufficient to determine clearly the period of
the secondary mode, whose amplitude should be very small.

3.Discussion

In order to understand the origin of the unusual light curves we made some
tests with the one-zone model (Stellingwerf, 1972), which is a simple and powerful
tool to study the main characteristics of the radial pulsations. In the present note
we will report only on the preliminary results of these tests and comparisons with
observations, and we will reserve a future paper for a thorough description and dis-
cussion. The tests have given some indications that the reason for the unusual ris-
ing branch could be a high value of the nonadiabaticity parameter ¢ (see eq.(15) in
Stellingwerf 1972); this high value implies that the star is hotter than the instability
strip or it has a hydrogen and/or helium depleted envelope.The intrinsic colors of
V1719 Cyg, however, are similar to those of the other high amplitude & Scuti stars,
that is the variable is located above the main sequence, near the cool border of the
instability strip (see Fig.3). Moreover, Johnson and Joner found that the spectrum is
heavily blanketed and may be metal rich. If we consider this indicative of an Fm-
type star, then we may hypothesize that the diffusion mechanism was at work and
yielded an increased metallicity and helium depletion. The coexistence of metallicity
and pulsation was shown to be theoretically possible by Cox, King, and Hodson (1979)
for stars near the cool border of the instability strip; that is in such stars the pul-
sation is possible even with a very small helium content in the ionization zone.
Another interesting result obtained by Cox, McNamara, and Ryan (1984) was that
the helium depletion gives a high period ratio for the first overtone and fundamen-
tal mode of & Scuti stars. The period ratio of 1719 Cyg is 0.80, which is higher than
the canonical one (0.77); moreover, as the main period is rather long (0.267 d), it
is difficult to believe it to be the period of the first overtone, hence one should ex-
clude that the pulsation modes of V1719 Cyg are the first and second overtones.

On the whole, the observations and theory are concurring to form a plausible
scenario for the V1719 Cyg phenomenon. However, more observational and theoreti-
cal tests are needed in order to confirm the metallicity of V1719 Cyg and V798
Cyg, to exclude that the mi behavior is due to the second period itself, and to study
the influence of other possible parameters (e.g. radiation pressure; Stellingwerf and
Gautschy 1987) on the light curve shape.
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IS THREE-MODE RESONANCE ABLE TO SUPPORT BEAT CEPHEID-TYPE
PULSATION?

G. Kovécs and Z. Kollath
Konkoly Observatory, Budapest, Hungary

Abstract

The general case of resonant three-mode coupling including non-res-
onant (cubic) mode interaction is studied in the context of beat Cepheid-
type Fulsation. It is shown that even small non-adiabaticity in the resonant
coupling can lead to steadf' three-mode (i.e. double-periodic) pulsation,
which is the only stable solution. Large differences in the non-adiabatic-
ity of the resonant coupling can easily lead to substantial period ratio
change, which may serve as an explanation of the period ratio-mass dis-
crepancy of the beat Cepheids. Besides the three-mode steady solution,
the relevant equations offer a whole wealth of different solutions for various
(physically possible) parameter combinations. These solutions include single-
mode steady pulsation, three-mode solution with periodically modulated
amplitudes and phases, period-doubling, and chaos.

The long-standing problem of modelling steady double-periodic stellar pulsation
has posed a very difficult puzzle for theoreticians ever since their first efforts to
solve it (Stellingwerf 1975a,b; Cox, Hodson, and Davey 1976; Cox 1982). In addition,
in the case of beat Cepheids, even the observed period ratio does not fit that com-
puted by linear pulsational codes, if evolutionary masses are assumed (e.g. Petersen
1973).

Simon’s (1979) hypothesis, that double-periodic pulsation is connected with the
lowest order resonance among the two directly observable modes and a higher order
one, stimulated further studies in this field. Unfortunately, direct checking of this
hypothesis by means of a hydrodynamic code led to a negative result (Simon, Cox,
and Hodson 1980). Moreover, a subsequent study of the amplitude equations de-
scribing the resonant mode interaction with adiabatic coupling coefficients showed
that three-mode resonance supports single-mode pulsation rather than three-mode
(i.e. double-periodic) pulsation (Dziembowski and Kovdcs 1984; hereinafter DK). The
same authors, however, also showed that a 2:1 resonance between one of the ob-
servable modes and a higher order one can easily lead to double-periodic pulsation
in some neighbourhood of the resonance centre. The subsequent hydrodynamic sur-
vey of Kovdcs and Buchler (1988) has confirmed this result, and led to the first, easy
to reproduce beat RR Lyrae model. The problem here, however, is that in order to
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satisfy the resonance condition and get unstable first overtone single-mode pulsation
(the necessary conditions for double-periodic pulsation to be the only one which is
stable), one needs to assume relatively high mass and low temperature for the model.
This leads to wrong period ratios, which are not compatible with the observations.
The same authors conclude that existing radiative hydrocodes are unable to repro-
duce the observed beat RR Lyrae pulsation, in view of which one needs to include
additional physical and mathematical features (convection, better shock-treatment,
difference scheme, less artificial dissipation) in order to tackle the problem again
(see also Cox 1987; and Davis 1988).

The purpose of the present note is to study again the effect of three-mode
resonance with the aid of a more general set of equations — as was used by DK.
One of their main simplifications, i.e. omission of the non-adiabatic effect in the res-
onant coupling, was criticized by Klapp, Goupil, and Buchler (1985) on the ground
of the consistency of the series development when the amplitude equations are
derived. Here we include all effects of the mode interaction up to the cubic terms,
except for the nonresonant period change (i.e. the quadratic terms in the equations
for the phases). With this assumption and by introducing normalized time, ampli-
tudes and relative phases, the amplitude equations for three-mode resonance read as
follows

| EE 1

a] = wa, + aja, cos o 5 (1)
! =

a, = Mya, + aja, cos (a+B2) s 2)
' = " -—

ay = Mjay - a,a, cos (a+B3) 5 3)

alai = a,a, sin a s (1a)

azaé = a,a, sin (at+B2) 5 (2a)
a3a§ = aa, sin (a+B3) 3 (3a)

ol 2 2 2
where ¥, =n, (l+a  aj+a a+a, qal) .
Primes denote derivation by the normalized time © which is related to the

physical time by t=u;t, where u, is the linear growth-rate. of the first mode, and
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it is assumed to be positive. The normalized amplitude is defined by aj=Aj/f; ,
where A; is the physical amplitude, and the factor f; is computed by the equation
f%=n’f(cjcl;)where ¢y is the modulus of the resonant coupling coefficient. The in-
dices are different in f;,Cj and Cg and 1<i, j, k<3. The resonant and the non-res-
onant coupling coefficients (C4,Bi and ayj respectively) are complicated integrals of
the various products of the linear non-adiabatic (LNA) eigenfunctions and the static
stellar parameters over the envelope. Evaluation of the resonant coupling coefficients
is relatively easy in the adiabatic case (p2=p3=0);for radial pulsation it is given by
Takeuti and Aikawa (1981); and for the non-radial case by Dziembowski (1982) and
by Dziembowski and Krélikowska (1985). The general non-adiabatic case is treated an-
alytically by Buchler and Goupil (1984), and numerically (for 2:1 resonance) by Klapp
et al. (1985). Because, except for their order of magnitude, we do not know much
about their values, we treat them as (almost) free parameters. It is important, however,
that all o4 are negative (Buchler and Kovdcs 1987) and that c; are in the order of
the LNA-eigenfrequencies (Takeuti and Aikawa 198l; Dziembowski and Krélikowska
1985).

The phase variables a,a; are related by a=Avt+oz-aj-az, where Av= (w3~
wj-wp)/mand w; is the LNA eigenfrequency of the i-th mode. We see that for
non-zero amplitudes, equations (1a), (2a), (3a) can be combined into one equation

ag a aja

3
7 sin(a) - )

o sin(a+pj3) - 3 sin (a+By) (4)

a'=Av+ &
43

This equation, together with equations (1), (2), (3) forms a closed set for the
four unknown functions a;,ay,a3 and a , which are applicable for the multimode
(non-vanishing) solutions of the original equations.

Assuming that the eigenfunctions are normalized to unity at the surface, the
surface radius variation is given by

AR/R0=Alsin(w1t+¢1) + Azsin(wzt-HDz) an A3sin(w3+q>3) s (5

where Ro is the static radius, ¢j=aj,®p=a; and @3=o3-®; with ® being an ar-
bitrary phase.

Since we are interested in beat Cepheid-type pulsation, we assume throughout
the following discussion that the growth-rates of the low-frequency modes are posi-
tive, whereas that of the highest-frequency one is negative. The case when the highest-
frequency mode is linearly excited and the other two are damped was treated (in
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second order adiabatic approximation) by Moskalik (1985) and by Dziembowski and
Krélikowska (1985) in the context of white dwarf and & Scuti pulsations respectively.

DK treated equations (1), (2), (3) and (4) in the adiabatic approximation of the
second order coupling coefficients (B2=p3=0). They concluded that this type of res-
onance leads to a situation when at least one of the single-mode constant-amplitude
(i.e. fixed point) solutions is stable. For some very restricted parameters one might
get a stable three-mode (i.e. double-periodic) solution coexisting with (at least) one
of the single-mode solutions. In addition, only the very close neighbourhood of the
three-mode fixed point attracts, therefore, one of the single-mode solutions is the
most probable observable limiting state.

First we deal with the case when all ajj=0 . Dziembowski (1982) has shown
that if p2=p3=0, there is no stable fixed point solution. Here we prove the fol-
lowing property; In the general case, stable fixed point solutions exist for quite large
ranges of @2, B3 . However, for small frequency mismatch the parameter regions
0<p2<m, w<B3<2m and w<p2<2m, 0<p3<= surely yield unbounded solutions.
Indeed, for Av=0 the fixed point solution is symmetric to the point B2 =p3=m, there-
fore, it is enough to study that class of solutions for which sin «>0. The positivity
of the amplitudes yields cos a<0, cos(a+82)<0, cos(a+p3)>0. The last inequal-
ity implies 0<p3<w. The stability condition (one of the Routh-Hurwitz criteria, see
e.g. Kubicek and Marek 1983), requires tan(a+p2) >0, therefore 0<p2<«. We re-
mark that one can put more restricted limits on g2 , by the thorough examination
of one of the coefficients of the characteristic equation for the stability roots.

We searched numerically for the stable fixed point solutions of equations (1)-
(4). For a fixed parameter set (Av, ny,n4, 82, 83) the equilibrium condition (i.e. all
time derivatives equal zero) led to a cubic equation for the tangent of the phase «.
Subsequent computation of the equilibrium amplitudes was straightforward. Linearized
stability analysis was performed by the application of the Routh-Hurwitz criteria on
the resulting characteristic equation. Figures 1 and 2 show the regions of the stable
three-mode solution in the (B3, p2) plane for zero and large frequency mismatches
respectively. Each box corresponds to different (uy,u3) values. It is seen that the
basic property we have proved is clearly exhibited. We would mention that in the
less relevant case for beat Cepheids, i.e. when np< 1, the situation is very similar to
the ones shown. Besides the stable fixed point solutions (black shaded areas) we also
show the regions where only the last Routh-Hurwitz criterion is not satisfied (hatched
areas). In these regions the fixed point solution may bifurcate to a limit cycle solu-
tion (Hopf bifurcation, see e.g. Marsden and McCracken 1976). Straightforward
numerical integrations of the equation have shown that the fixed point solutions
indeed bifurcate to limit cycles in these regions. In addition, the limit cycles further
bifurcate at the border of these regions to chaos via period-doubling bifurcations.
Further away from the limit cycle and/or fixed point regions however, the solutions
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blow up. (This happens in the regions mentioned for the proved property, for ex-
ample.)

(21_4) (2,—7) (21_10)
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Fig. 1. Regions of stable fixed point (black) and limit cycle solution (hatched)
of the general three-mode resonance equation in second order approximation.
All computations were performed with the same frequency mismatch as shown
at the top of the figure. Numbers in parentheses denote the values of (1y,13),
kept constant in each case plotted in separate boxes. Notations are the same
in equations (1) — (4).

We now turn to the discussion of the general case, when all ajj are kept in
equations (1) — (4). The first question we ask is whether it is possible to destabilize
both single-mode solutions by introducing non-adiabatic phase shifts (B2, B3) in the
resonant coupling. Following the same procedure as in DK, the criteria for the sta-
bility of the single-mode solution a;#0, a,=a;=0 are

* *
n3 i n3 <0 s o
**((*+*)2+(A )2)+ 2(*+*)2 ol
ny wy ((no+uy v ayqg(nytng cosPp (7
—alio Sinza i AV(HE-ME)E%O SiHB >0
Here afg-1/a;, wf=w(l+oy afy) and p=p2-p3 .
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Fig. 2. As for Figure 1, but for different frequency mismatch.

Stability criteria for the a,#0; aj=a3=0 solution can be obtained by the inter-
change of the indices 1 and 2 (i.e. p=p3) in the above formulae. It is clear that
even if the single-mode state is stable in the non-resonant case (5<0) , the three-
mode resonance may be able to destabilize this state if p=0 . The question whether
this property will also lead to stable three-mode solution can only be studied by
numerical means.

If we wish to perform a numerical survey of the possible fixed point solutions
of equations (1) - (4), we cannot follow the same technique used in the discussion
of the second order case since the resulting equation for the equilibrium phase would
have been of very high order and thus very difficult to tackle both analytically and
numerically. Instead, for fixed #2,%3 and ajj (1<i, j<3) we choose some equi-
librium values of a;,a, and a;and compute (by very simple algebra) the equilibrium
phase and the corresponding Av, p2 and B3. On performing this computation many
thousand times with different (ay,8,,a4) values, one can map the possible stable
fixed points.




By

We show in Figure 3 one of our representative results. The different stable
fixed point solutions are plotted with different symbols; vertical line (a2=0, a1=a3=0),
horizontal line (a1=0, a2=a3=0), crosses (ai=0, a2=0, a3=0)). In order to com-
pare the underlying physical model with the parameters listed, assuming Cj~wq,
n1=0.01 (dimensionless, see Stellingwerf 1975a) the relative radius variation is in the
range of 0.01 - 0.5 and the maximum of the normalized frequency distance (see
Petersen 1979) is |1-(w1+w2)/w3|<0.1 .

0
= =2
N
%" u3=—10
,.::';l,.., Av=(-10,10)
,.,. a,,=-0.001
B, h‘iﬁ!l. % S s
a13—-0.00001
a21=-0.002
a22=—0.002
a23=—0 .00001
a31=-0 .00001
Ay,=" -0.00001
33-—0.0001
2n
0 2n

B3

Fig. 3. Regions of the stable fixed point solutions of general three-mode reso-
nance equation. The set of parameters used is shown beside the figure. Ranges
of equilibrium amplitudes were the same for all three amplitudes, i.e. 1-61.
Vertlcal lines correspond to the single-mode solutions az=0, ai=a3=0, hori-
zontal lines to a1=0, a2=a3=0, and crosses to the three-mode solution.

We see that all possible combinations of the stable fixed point solutions are
observable. We mention however, ‘that since Av is not fixed, there is an ambiguity
in identifying the models on the basis of this figure. (Direct check of the output of
the stability analysis, however, showed the existence of simultaneously stable single-
and three-mode fixed points.) Similarly to the special case discussed by DK, there
are coexisting stable single mode (both) and three-mode states close to the origo
(B2, B3)=(0,0). Also the models are of "either-or'-type (Stellingwerf 1975a) in the
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corners of the (B2, p3) plane, though the non-resonant parameters correspond to
"first mode only" (u’i>0,,n*< 0). This result is also in agreement with that of DK.
The new feature, however, is the appearance of regions where only the three-mode
state is stable. This can even happen with small (B2, B3) values, but is quite com-
mon for larger (B2, p3) values. We see that it is possible to have a situation when
the system continuously changes from one single-mode state to the other through a
- three-mode state. (It is mentioned that the figure is not appropriate for modelling
such an evolutionary change as the important parameters (i.e. uy, u3 , Av) primarily
determining the modal behaviour were kept constant). Straightforward integration
of many models in the right and left triangles of Figure 3 has shown that those mod-
els which do not have a stable fixed point solution, do have stable limit cycles.
However, we did not get a chaotic solution for any reasonable choice of oy .

We studied the fascinating question of how the observed period ratio changes
due to three-mode resonance. In the case of single-mode pulsating RR Lyrae mod-
els the relative nonlinear period change is very small, of the order of 10210
(Stellingwerf 1975a and Kovdcs and Buchler 1988). The siwation is the same for beat
RR Lyrae models resulting from 2:1 resonance (Kovdcs and Buchler 1988). However,
in the transient double-periodic pulsation of a Cepheid model Uji-Iye (1986) showed
that the nonlinear period ratio in the mixed-mode state can be as low as 0.71, com-
pared with the LNA value of 0.74 . Assuming a dimensionless growth rate of 0.01
for the first mode and an LNA period ratio of 0.75 for the second and first modes,
we computed the nonlinear period ratios for the stable three-mode states. We used

the same parameter set as for Figure 3, but smaller Av and (aj, az, a3) ranges.
Figures 4 and 5 show the variation of the nonlinear period ratio with g2 and B3 re-
spectively. It is remarkable that (2 , p3) defines two different classes of three-mode
solutions; one with a period ratio larger than the linear ratio, the other with a
smaller one. To obtain a large period ratio change, however, we need large (B2, B3).
It is very exciting that three-mode resonance (with appropriate proper (B2, p3)) is
able to account not only for the existence of double-periodic pulsators, but also for
the explanation of the beat Cepheid mass anomaly.

We conclude that three-mode resonance can, in principle, cause beat Cepheid-
type pulsations if we allow some (proper) non-adiabatic phase shift in the resonant
coupling. If, however these phase shifts are small, three-mode resonance supports
single-mode rather than three-mode pulsations. There is no direct evidence that the
non-adiabatic phase shift in the resonant coupling is large in the beat Cepheids (no
numerical results are available). However, in the case of bump Cepheids, both ana-
lytical (Buchler and Kovdcs 1986) and numerical results (Klapp et al. 1985) indicate
that non-adiabaticity in the resonant coupling might be important. Nonlinear hydrody-
namic computations, however, have not shown the desired effect of three-mode res-
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onance (Simon et al. 1980; and Kovdces and Buchler 1988). This might indicate that
the non-adiabaticity in the resonant coupling is sufficiently small for realistic stellar
models. At the same time, we must keep it in mind that the present hydrodynamic
codes are very dissipative (for numerical stability) which can easily blur the effect of
some resonances. We must wait for more accurate hydrodynamic modelling of Cepheids
and/or for direct computation of the non-adiabatic coupling coefficients to decide
whether the exciting possibilities arising from non-adiabatic resonant three mode cou-
pling are really observable in realistic stellar models.
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RR LYRAE STARS: BEAT AND BLAZHKO EFFECT

B. Szeidl
Konkoly Observatory, Budapest, Hungary

Abstract

About one third of the RR Lyrae stars show non-repetitive nature.
At present two effects are known, which produce this behaviour: double-
mode pulsation and Blazhko effect. A concise description of these phe-
nomena is given and attention is called to some important problems of
the RRd and Blazhko stars, and the possible relationship between them.

1.Introduction

The RR Lyrae stars are regularly pulsating stars. Investigation of their period
changes has shown that their periods are remarkably constant. The change in their
periods is usually less than some tenths of a second over several decades. Neverthe-
less a number of RR Lyrae stars exhibit some kind of non-repetitive features in their
light curves from cycle to cycle. As far back as 80 years ago Blazhko (1907) had al-
ready taken note of this phenomenon. He noticed that the times of maximum light
of RW Dra could not be represented by a linear formula, a cosine term had to be
added to it, i.e. a periodic change with a secondary period of 41.6 days had to be
postulated in the fundamental period. Shapley (1916, 1918) was the first to show that
the periodic oscillation of time of maximum was always accompanied by changes in
the heights of light maximum and in the shape of light curve with the same long
period. Later on this kind of long periodic, secondary variation was found in a num-
ber of RR Lyrae stars, Usually the large scatter on the folded light curves, espe-
cially around light maxima, calls attention to the existence of this effect. Since Blazhko
was the first to observe this phenomenon, it is called Blazhko effect. Recently the
effect is frequently referred to as amplitude modulation, because during the course
of a long (around 1-3 months) secondary cycle the most striking feature is the oscil-
lation of the light amplitude.

Because the existence of the Blazhko effect in some RRab stars is unquestion-
able, attempts have been made to identify the changes in the light curves (in ampli-
tudes, heights of maxima, etc.) of those RRc stars exhibiting the Blazhko phenomenon.
It is still questionable whether the RRc stars exhibit light curve variations with a
long, 20-100 days, period.
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It is indeed surprising that during the seventy years of ‘observations of RR
Lyrae stars nobody recognized earlier that these stars might possess another kind of
double periodicity, viz. double-mode pulsation. In this case the modulation or beat
period is very short, around one day, and a Jarge scatter characterizes the whole light
curve folded according to phase. The first and so far the only known field RR Lyrae
star of this sort, AQ Leo, was discovered about ten years ago by Jerzvkiewicz and
Wenzel (1977).

Sandage, Katem and Sandage (1981) noticed that there was an abrupt increase
in scatter of the photometry of ¢ type stars of M1S in the very narrow period range
0.390 day <P <0.429 day. The amplitudes of these variables vary from cycle to cycle
and this gives rise to the scattered nature of the folded light curves. Because this
narrow period range occurs just at the transition period between ¢ and ab varia-
bles, the cited authors presumed the phenomenon to be due to a mixing between
the fundamental mode and the first overtone.

The double-mode RR Lyrae pulsators are often called RRd variables.

2. Frequency of RR Lyrae stars with non-repetitive nature

The observed light curve variations indicate that the star possesses some sort
of non-repetitive feature. Further detailed investigations are likely to be able to clarify
whether this feature is cansed by the Blazhko effect or by double-mode pulsation.
Probably the RRab stars showing non-repetitive character in their light variation ex-
hibit the Blazhko effect, whereas the RRc stars of this sort are double-mode pulsa-
tors.

The most reliable estimation of the frequency of RR Lyrae stars showing light
curve variation can be obtained by using the fairly homogeneous photographic data
of the cluster variables. For example, in M3 the effect was shown in 35 out of 104
RRab stars, this corresponds to a frequency of 34% (Szeidl, 1965, 1973). Smith (1981)
extended the statistics to the RRab stars of a further three clusters (MS, M1S5, o
Cen) and the Draco dwarf galaxy, and obtained a frequency of 25% for the RRab
stars with Blazhko effect. Table 1 summarizes all the reliable data available in the
literature for the cluster variables in M3, M5, M15 and » Cen and Draco dwarf
galaxy. The results are in good agreement with the earlier estimates, the frequency
of the stars in question is between 25 and 30%. These results are well supported by
the study of Kinman et al. (1984) who investigated the RR Lyrae stars in the field
RRI (MWF 361A). Of the 42 ab type variables in their sample "7 (16%) definitely
and 5 (129%) probably have more scatter in their light curves than can be accounted
for by observational error”.
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Table 1. RR Lyrae stars in M3, M5, M15, o Cen and Draco dwarf galaxy (r<5’40")

period range all non-rep. Z
ab c ab c ab (]

0422 - 0926 - 1 - - - 0.0
0.26 - 0.30 - 14 - 1 - Tl
0.30 - 0.34 ~ 33 - 3 - 9l
0.34 - 0.38 - 37 - 10 - 27.0
0.38 - 0.42 - 42 - 22 - 92
0.42 - 0.46 7 5 1 4 14.3 = 80.0
0.46 - 0.50 30 3 12 - 40.0 0.0
0.50 - 0.54 57 1 19 - 3343 0.0
0.54 - 0.58 66 - 27 - 40.9 -
0.58 - 0.62 69 - 19 - 27,5 -
0.62 - 0.66 50 - 11 - 22.0 -
0.66 - 0.70 33 - 3 - 9.1 -
0.70 - 0.74 9 - - 0.0 -
0.74 - 0.78 10 - - 0.0
0.78 - 0.82 3 - - - 0.0
0.82 - 0.86 6 - - - 0.0 -
0.86 - 0.90 3 - - - 0.0
0.90 - 0.94 1 - - - 0.0

all 344 136 92 40 26.7 29.4

We come to the same conclusion if we investigate the field RR Lyrae stars.
The 3rd Edition of the GCVS and its first, second and third Supplements list more
than 4000 RR Lyrae stars, but refer to the Blazhko effect in only 180 cases. This
would mean a frequency of about 4-5%. The data of the GCVS are, however, very
inhomogeneous, especially towards fainter stars. This selection effect is clearly shown
in Table 2. In this table the numbers of RR Lyrae stars contained in the 3rd Edi-
tion of the GCVS and its Supplements down to 19th magnitude are given by mag-
nitude intervals. The Blazhko effect is mentioned in only 135 cases from among the
3207 RRab stars. Table 2 strongly suggests that the data of the GCVS for stars
fainter than the 12th magnitude are incomplete and for a reliable estimate of the
frequency of RRab stars with Blazhko effect only stars brighter than 12th magnitude
can be used. The result for these stars is around 30%.

Smith (1981) called attention to a very interesting and important fact: the ab-
sence of Blazhko effect among the long period RRab stars. Table 1 clearly indicates
that the RRab stars in clusters with a fundamental period longer than 0.7 day al-
ways have a stable light curve. In the field, four RRab stars with periods longer than
0.7 day and with supposed Blazhko effect are mentioned in the GCVS. These stars
are XX And (0.7227 d), CF Com (0.7392 d), SW For (0.8037) and AT Ser (0.7466
d).
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Table 2. Field RRab stars

mean all Blazhko
brightness RRab effect &

7200 - 7199 1 1 100.0
8.00 - 8.99 0 0 =
geBl=s S99 0 4 2 50.0
10.00 - 10.99 29 8 27.6
11.00 - 11.99 94 30 31.9
12,008="12.99 179 25 14.0
135 00R= 13595 283 18 6.4
14.00 - 14.99 650 1 259
15,008= 15.99 963 11 1ol
16.00 - 16.99 688 11 1.6
17,00~ 17.99 257 10 3.9
18.00 - 18.99 59 0 0.0

all 3207 135 4.2

The light curve variation of XX And (PB=36 days) was tound by Lange (1962)
from visual observations, while AT Ser is only reported in the GCVS as exhibiting
the Blazhko effect. Hoffmeister (1956) claimed that the light curve of SW For had
a changing form. However, photoelectric observations by Fitch, Wisniewski and John-
son (1966), by Kinman (1960) and by members of Konkoly Observatory (unpublished)
prove that these stars are monoperiodic. The possible Blazhko effect of CF Com
was mentioned by Meinunger and Wenzel (1968). Their photographic observations ex-
hibited some changes in the form of the light maxima of CF Com. As long as pho-
toelectric observations do not confirm the presence of Blazhko effect in this star we
can take it as a fact that amplitude modulation is able to take place only in RRab
stars with periods of less than 0.7 day.

The occurrence of Blazhko effect in some of the RRc stars is a matter of dis-
pute. Some doubtful cases have been reported. For example Ficarrotta and Romoli
(1979) using Todoran’s (1974) observations derived a secondary period of 29.88 days
for RZ Cep whereas Paczynski’s (1965b) and our unpublished photoelectric observa-
tions show that the light curve of RZ Cep is very stable. Moreover Glovnia (1983)
reanalysed Todoran’s data more rigorously and could not find clear evidence for the
presence of a long term amplitude modulation in RZ Cep. So the question whether
RRe stars have the Blazhko effect is open for further study.

On the other hand, the presence of double-mode pulsation in a significant
fraction of RRc stars is a common feature. Table 1 shows that about 1/3 of the RR¢
stars in clusters aredouble-mode pulsators, and their frequency increases with increas-
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ing period. There are four single periodic RRc stars with periods between 0.46 and
0.54 day. A rigorous and detailed investigation of these stars and a search for double
periodicity in them seems to be reasonable. .

The first double-mode field RR Lyrae star, AQ Leo, was discovered by Jerzy-
kiewicz and Wenzel (1977). There are some other RRc stars which exhibit strong light
curve variations and are good candidates for double-mode variables (e.g. BV Aqr,
P=0.364 day; AH Cam, P=0.369 day, BT Aqr, P=0.407 day). Recently Peniche et
al. (1987) carried out a thorough period analysis of the RRc type star ST CVn. They
came to the conclusion that ST CVn is a multiperiodic star and were able to iden-
tify three periods in its pulsation.

3. The Blazhko effect

The most significant feature of the Blazhko effect is the long term (20-100
days) amplitude modulation of the pulsational light variation. During the long mod-
ulation cycle or Blazhko period, the light curve undergoes a very characteristic var-
iation, in particular around light maxima both in shape and height. As an example,
a series of light curves of RR Lyr at different phases of the Blazhko cycle is shown
in Figure 1. Since observers have, in general, found the changes of the ascending
branch and maximum light most interesting and most characteristic of the Blazhko
effect, the observations have always been concentrated on this part of the light curves
and photometry has not been extended to the whole light curves. Hence, period
analysis of RR Lyrae stars with Blazhko effect meets very serious difficulties.

The Blazhko effect has been observed in a number of RRab stars, however,
in many cases we should accept the results with reserve. In the previous section some
examples have already been mentioned. In the following some further, intriguing ex-
amples are given.

Chumak (1965) reported that AT And (P=0.617 d) showed the Blazhko ef-
fect with a secondary period of 82.7 days. Our photoelectric observations (Oldh and
Szeidl, 1978) refute the existence of any secondary changes in this star. Lange (1962)
stated that AA Aql (P=0.362 d, PB=18 days or > 100 days) helonged to the group
of RRab stars with the Blazhko effect whereas Paczynski’s (1965a, 1966) accurate
photoelectric observations contradict this statement. On the basis of her visual ob-
servations, Kanishcheva (1971) suggested that DX Del (P =0.473 d, PB=35 days) had
light curve variation. The earlier photoelectric observations by Fitch, Wisniewski and
Johnson (1966) and by Preston (1961) do not support this suggestion. Firmanyuk
(1974) visually investigated KX Lyr (P=0.441 d) and concluded that it had strong
secondary variations with a period of 132.7 days. No sign of any light curve varia-
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tions of KX Lyr could, however, be found in Fitch, Wisniewski and Johnson's (1966),
nor in Stepien’s (1972) photoelectric observations. Batyrev (1957) used his visual ob-
servations in a discussion on AN Ser and claimed that this star also exhibited Blazhko
effect with Pg=22.94 days. Our long series of photoelectric observations (Szeidl,
1968h), however, shows AN Ser to be a stable, single periodic RRab star. All these
(and other, here not mentioned) erroneous results were probably the consequence
of the inferiority of visual observations.

There are two interesting stars (SW And and RR Gem), which deserve more
attention. Shapley (1921) observed an (.4 mag oscillation in the height of light max-
ima of SW And in 1920, while forty years later only a small variation in the shape
of the hump on the ascending branch could be detected. RR Gem showed the
Blazhko effect according to Detre’s photographic observations in the thirties. However,
the photoelectric observations carried out in the last thirty years have shown the star
to be single periodic. The behaviour of these stars indicates that there may be no
sharp distinction between RR Lyrae stars with or without Blazhko effect.

The RR Lyrae stars with known Blazhko period are listed in Table 3 using
only reliable data. An inspection of the data of this table suggests that no connec-
tion exists between the fundamental (P) and the Blazhko (PB) period. In Figure 2
logPg is plotted against logP. This figure demonstrates and supports the former state-
ment. In some of the Blazhko stars (Table 4) a second long period has also been
identified. In Figure 2 the logarithm of the other long period is also indicated. The
problem of reality of the two long periods needs further thorough investigation,
namely P2 is about of the same length as the observational season. Probably, RS
Boo is the only exception. The two long periods observed in this star are certainly
real, but the behaviour of RS Boo differs from the remaining Blazhko stars in other
aspects, too.

The oscillation of the heights and times of maximum light of Blazhko stars
during the secondary period is very characteristic (see figures Sa-e in Szeidl, 1976).
The amplitudes and asymmetries of these curves are marked with Amax, AO-C, pm
and po-¢, and the phase difference between the two curves with Ay. Table 5 sum-
marizes these data for ten stars. No connections seem to exist among the different
parameters. It is interesting to note that the characteristics may change in the same
star from one year to the other (e.g. RR Lyr). But there does exist an important
connection between the amplitudes of the RRab stars with Blazhko effect and that
of the single periodic RRab stars. On the period-amplitude plot, the highest light
amplitude of the Blazhko star always fits in the period-amplitude diagram of the
single periodic RRab stars. In the lower part of Figure 3 the period-amplitude dia-
gram of the RRab stars in M3 is given. In some cases the largest amplitude of the
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Table 3. RRab stars with known or presumed Blazhko period -

Star P(day) Pg(days) Reference
BM Del 0.351 ~100 " Ahnert et al. (1947)
RS Boo 0.377 537 Oosterhoff (1946)
RR Gem 0.397 37 Budapest, unpublished
MW Lyr 0.398 83118 Mandel (1970)
DM Cyg 0.420 26.0 Lysova and Firmanyuk (1980)
SW And 0.442 36.8 Baldzs and Detre (1954)
RW Dra 0.443 41.6 Blazhko (1907)
RV Cap 0.448 223.8 Tsesevich (1943)
BI Cen 0.453 n 70 Kinman (1960)
TU Com 0.461 n75 Ureche (1965)
XZ Cyg 0.467 574 Blazhko (1922)
RV UMa 0.468 90.1 Baldzs and Detre (1957)
AR Her 0.470 31.5 Baldzs and Detre (1939)
XZ Dra 0.476 76 Balazs and Detre (1941)
RY Col 0.479 ~ 90 Kinman (1960)
V14 in M5 0.487 7550 Goranskij (1980a)
X Ret 0.492 2 45 Hoffmeister (1956)
V674 Cen 0.494 29.4 Hoffmeister (1956)
V63 in M5 0.498 146.8 Goranskij (1980b)
KM Lyr 0.500 v 30 Hoffmeister (1951)
V5 in M3 0.506 194.6 Panov (1980)
RZ Lyr (5170 116, 7 Romanov (1967)
V434 Her 0514 26.1 Rozhavski (1964)
SW Psc 0521 34 .5 Ureche (1971)
Y LMi 0.524 33.4 Martynov (1940)
V2 in M5 0,.526 132 Goranskij (1980b)
V30 in M53 0.535 37.0 Wachmann (1968)
SZ Hya 0.537 25.8 Kanyé (1970)
UV Oct 0.543 v 80 Hoffmeister (1956)
V788 Oph 0,547 V115 Mandel (1969)
RW Cnc 0.547 87 Blazhko (1922)
AD UMa 0.548 35-40 Hoffmeister (1958)
TTiCne 0.563 89 Szeidl (1968a)
RR Lyr 0.567 40.6 Hertzsprung (1922)
V829 Oph 0.569 ~165 Mandel (1969)
AR Ser QeHiS 105 Szeidl (1967)
WY Dra 0.589 14.3 Chis et al. (1975)
DL Her 0.592 336 Szeidl (1963)
V365 Her 0.613 40.6 Tsesevich (1961)
ST Boo 0.622 284 Lange and Firmanyuk (1975)
BH Peg 0.641 39.8 Kudryashova (1978)
Z CVn 0.654 220 . Kanyé (1966)
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Fig. 2. Relationship between the P main and Pp Blazhko period. The uncer-
tain results for RRc stars are indicated by circles.

fable 4. Blazhko stars with two long periods

Star P(day) Pgi(days) Ppo(days) Reference

RS Boo 0.377 62 533 Kanyé (1980)

RW Cnc 0.547 29.6 ghET! Baldzs and Detre (1950)
XZ Cyg 0.467 B25 15535 & Muller (1953)

RW Dra 0.443 41.61 1120 55 Balizs and Detre (1952)
AR Her 0.470 31355 90.83 Almar (1961)

Y LMi 0.524 33.4 89.2 Balazs (1956)

RR Lyr 0.567 40,7 122.1 Walraven (1949)
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Table 5. The most important characteristics of the max-y and (O-C)max- curves.

Star Years émax Ag—c Ko Ho-c AY
TT Cnc 1967-68 0740 0032 0.50 0.60 053
Z CVn 1966 0.44 0.045 0.41 0.56 092
XZ Cyg 1972 0.59 0.045 0.50 0.28 0.20
RW Dra 1937, 0.82 0.101 0.40 0.34 0.32
AR Her 1937-39 0.52 0.063 0.33 0.39 0513

1956 0.35 0.045 0.53 05 3 0.19
DL Her 1963 0.32 0.022 0.37 0.45 0.15
SZ Hya 1965,70 0.74 0.016 0.28:  0.40: 0.10
RR Lyr 1972 0.32 0.041 0.48 0.38 0.32
1973 0.26 0.037 0.48 0.36 0535
1974 0.28 0.046 0.52 037 0:29
AR Ser 1967 0.61 0.055 0.49 0.52 0151
RV UMa 1956-57 0.49 0.011 0.45 0.38 0.12

Blazhko stars is below the expected value, probably because only smaller amplitudes
have been observed due to the unfortunate distribution of observations. The upper
part of the figure shows the same plot for field RR Lyrae stars. Since the ampli-
tudes depend on the metal abundance of the stars, only the data of those stars which
have low (As=3) metal abundance are plotted. These results clearly show that the
Blazhko effect is connected with a mechanism which tries to suppress the normal
pulsational features (amplitudes) of the star. ‘

The most thoroughly observed Blazhko star is RR Lyr itself. The long series
of observations have made it possible to investigate the changes in the intensity of
the Blazhko effect. In the years 1963, 1967, 1971 and 1975 the intensity of the
Blazhko effect became very weak. Hence it became obvious that the Blazhko effect
in RR Lyr has a four-year cycle. By means of old visual and photographic observa-
tions we were able to trace back this four-year cycle to 1935 (Detre and Szeidl, 1973;
Szeidl, 1976). The cycle lengths varied between 3.8 and 4.8 years. At the end of an
old four-year cycle the amplitude of the light maximum variations is smaller than 0.1
mag and then it very rapidly becomes as large as 0.2-0.3 mag. The transition from
an old four-year cycle to a new one is always accompanied by a phase shift of about
10 days in the 41-day Blazhko period, and these shifts may be both positive or nega-
tive. After each discontinuity in the O-C diagram of the 41-day cycle the secondary
period remains constant during the following four-year cycle.
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Fig. 3. Period-amplitude diagram for RRab stars in M3 and in the field. The
highest and smallest amplitude of the Blazhko stars observed are also indicated.

Other Blazhko RRab stars may also possess this kind of long period cycle (XZ
Cyg: 9.2 years; RW Dra: 7.4 years;Y LMi: 7.7 years) which reminds us of the solar

activity cycle. In this respect it may be worth mentioning that Babcock (1958) ob-
served a strong, variable magnetic field in RR Lyr.
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4. The double-mode RR Lyrae stars

The first RR Lyrae star in which the excitation of both the fundamental and
the first harmonic mode could be identified was AQ Leo. Analysing Wenzel's (1976)
observations Jerzykiewicz and Wenzel (1977) came to the conclusion that AQ Leo is
a double-mode RR Lyrae star with periods 0.54975 and 0.41015 day, and period ratio
P1/Po=0.746. The light curves of this star could well be represented by non-linear
superposition of the two components. It was remarkable that the amplitude of the
first overtone was about twice as large as the amplitude of the fundamental mode.

After Sandage, Katem and Sandage (1981) had called attention to a number
of RR Lyrae stars in M15 that might be in the mode mixing state, a systematic
search started for double-mode RR Lyrae stars in globular clusters and extragalac-
tic systems.

In the following a short survey of double-mode RR Lyrae stars in different
systems is given.

The RRd stars of M15 were first investigated by Cox, Hodson and Clancy
(1981, 1983), and later by Nemec (1985b) and by Kovdcs, Shlosman and Buchler
(1986) in detail. Table 6 lists the RR Lyrae stars of M15 in the mixed-mode period
range. The data for the double-mode stars have been taken from Nemec’s study. It
is interesting to note that various authors analysing the same photometries, but using
different techniques arrived at slightly different results as to the periods, period ra-
tios and amplitudes. It may be worthy of mention that in M15 about 80 RR Lyrae
stars with known periods are identified. In Table 6 the data for the ab and c¢ stars
are taken from Barlai (1988). As can be seen from this table the fundamental to
first overtone period ratio for the RRd stars is close to Pi/Po=0.746. Adopting the
King Ta (Y =0.299, Z =0.001) model of Cox, Hodson and Clancy (1983) for the mass
calibration, the mean double-mode pulsation mass is 0.658 M@ with a probable error
of 5% (Nemec, 1985b). These parameters, i.e. the period ratio and beat mass, are
characteristic of RR Lyrae stars of Oosterhoff II clusters.

In M3 two double-mode RR Lyrae stars are known, V68 and V87 (Goranskij,
1981: Cox, Hodson and Clancy, 1983). Table 7 presents the data for the RR Lyrae
stars of M3 in the mixed-mode range. The stars are listed according to increasing
period. The periods of single periodic ab and c stars have been compared by adopting
the period ratio P1/Po=0.745. 1f a definite trend in the change of the periods of
these stars has been observed, the p values (AP/P) (Szeidl, 1965, 1973) are also in-
dicated in Table 7. These values do not support the hysteresis suggestion concern-
ing the transition through the mode mixing period interval. Further investigation of
period changes in the mode-mixing period interval may contribute to our better un-
derstanding of the pulsational modes in this period interval. From the period ratios
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of the two RRd stars in M3 Cox, Hodson and Clancy (1983) derived a beat mass of
about 0.55 M@ for these stars. This mass value is characteristic of Oosterhoff type
I RR Lyrae stars.

Table 6. RR Lyrae stars of M15 in the mixed-mode range

3 c 043887 - - 0™59 L %
39 d 0.3896 095216  0.7469  0.44 0720 g2
41 d 0.3918  0.5240: 0.7476  0.48  0.15: 3.2:
16 c 0.3992 - - 0.47 - -
43 c 0.3960 - - 0.66 - &
96 d 0.3963  0.5309  0.7465  0.517 0.188 2.7
51 d 0.3970- 0.5337 - 0.743%aés 0,53 O.12 bob
78 c 0.3989 % - 0.60 P
54 d 0.3996  0.5377: 0.743 0.46 0.10 4.6
61 d 0.3996  0.5361 ° 0.7454 -~ 0.51 ' 0.23 2.7

101 d 0.4007  0.5376:  0.7454:

26 d 0.4023  0.5391  0.7461  0.41  0.10 .1
67 d 0.4046  0.5425  0.7459  0.37  0.20 1.9
30 d 0.4060 0.5446%" “0.7455 ° 0,327 '"9.18 1.8
100 c 0.4061 - - 0.70 - -
58 d 0.4073  0.5459  0.7460  0.51  0.24 g
31 d 0.4082  0.5472  0.7460  0.44  0.18 2.4
59  ab - 0.5548 - - 0.85 -
104 c 0.4141 - - 0.70 = -
53 d 0.4141° 0.5553  0.7458  0.52  0.19 5i7
56  ab = 0.5704 - 0.92 ”
19  abBl . 0.5723 g = 1.31 —
17 d 0.4289  0.5748  0.7462  0.35  0.16 22
13 ab = 0.5750 i & 1.11 .
29  abBl? - 0.5750 - - 0.85 =
52 ab - 0.5756 & o 1.08 i
15  abBl - 0.5836 o - 1.24 s
33  abBl - 0.5839 - 4 0.80 >
12 abBl 2 0.5929 - - 0.78 *
44 abBl - 0.5956 % = 0.88 -

IC 4499 is found to be unusually rich in RR Lyrae stars. Coutts Clement, Dick-
ens and Epps Bingham (1979) investigated the RR Lyrae stars in the cluster and pre-
sented periods and light curves for 52 ab type and 23 c type stars. The cluster clearly
belongs to Oosterhoff type 1. In a recent paper Clement et al. (1986) discuss the
double-mode RR Lyrae stars in this cluster. Thirteen RRd stars have been identified
which have surprisingly uniform properties and are considerably different from the
RRd stars found in M15, in an Oosterhoff type II system. The mean ratio of the
first overtone period to the fundamental one is <P1/Po> =0.7444x0.0002 and the
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mean double-mode pulsation mass for the 13 stars, using the King Ia mass calibra-
tion, is 0.538 M@. Table 8 collects the data for RR Lyrae stars of IC 4499 in the
mixed-mode period range based on the results of Coutts Clement, Dickens and Epps
Bingham (1979) and Clement et al. (1986).

Table 7. RR Lyrae stars of M3 in the mixed-mode period range

Var Type Py P PI/PO 10°98 (d/d)
140 c 093331 - - 0.0

97 c 0.3349 - - +1.6

72 ab - 094561 - +2.0

77 ab - 0.4593 - *1,7

177 c 0.3483 - - (cyclic)

126 c 0.3484 - - (cyclie)

125 e 0.3498 - - +2.9

28 abBl - 0.4706 - (cyelic)

85 c 0.3558 - - (cyclic)

68 d 0.3560 0.4779 0.7449 -

87 d 0.35%5 0.4797 0.7452 -

25 abB1? - 0.4801 - +6:3

22 abBl - 0.4814 - (strong irreg.)
13 abB1? - 0.4830 - -9.4

79 abBl - 0.4833 - (strong irreg.)
41 abB1? — 0.4850 - (cyclic)

Clement, Ip and Robert (1984) looked for double-mode pulsation in three RRc
variables of M9. Two of them turned out to be single periodic, but for the third
star, V5 (P1=0.3786 d), there was a weak evidence for its double-mode nature with
a period ratio P1/Po=0.747.

The double-mode nature of V3 in M68 was discovered by Andrews (1980).
This RRd star has periods P1=0.392 day and Pp=0.526 day, and the period ratio
0.745.

A very interesting and remarkable result was obtained by Nemec, Linnell Nemec
and Norris (1986) when searching for double-mode RR Lyrae stars in o Cen. Using
Martin’s (1939) extensive photometry, the brightness variation of 55 RR Lyrae stars
was thoroughly analysed, and in the period interval 0.35 day to 0.50 day there ap-
peared to be no doubly periodic RR Lyrae stars.

Double-mode RR Lyrae stars have also been found in extragalactic systems.
For a number of RR Lyrae stars in and around NGC 2257 - an LMC globular cluster
~ Nemec, Hesser and Ugarte (1985) found that the light curves of these stars showed
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greélter than average scatter and in some cases the scatter could not be explained
by the effects of crowding or background starlight or both. These stars (V18, V43,
V2952, V2948, V2945) may be RRd stars.

Table 8. RR Lyrae stars of IC 4499 in the mixed-mode period range

Var Type P, Py P, /P, A Ag Aq/A,
69 c 093402 % < o062 - =
78 d 0.3519 094726 0.7445 0.43 0M™2 1.3
18 d 0.3523 0.4734 0.7442 0.55 0.33 1.7
65 d 0.3528 0.4740 0.7442 0.57 0.23 2.5

103 c 0.3530 " i W S o
10 d 0.3532 ' 0.4746 0.744F 0.53 “0.44 1.2
21 d 0.3533 0.4748 0.7441 0.55 0.26 2.1
77 c 0.3546 - * I -
92 T ~ = T =
89 c 0.3554 - - s - ”

109 d 0.3555 0.4776 0.7444 0.48 0.26 1.8
98 c 0.3556 - * .81 - X
59 d 0.3573 0.4800 0.7443 0.49 0.27 1.8

111 c 0.3573 - - Le - »
87 d 0.3577 0.4805 0.7444 0.49 0.35 1.4
63 d 0.3577 0.4807 0.7441 0.53 0.17 3.1
96 c 0.3584 ¥ L G.5% - #
55 c 0.3585 o - By - -
73 d 0.3591 0.4825 0.7443 0.58 0.38 1.5
32 c 0.3600 - - 0.43 = ¥

3 ab 3 0.4832 - % 1.47 J

42 d 0.3615 0.4852 0.7450 0.54 0.28 1.9

31 d 0.3617 0.4861 0.7442 0.55 0.39 1.4

95 d 0.364  0.491  0.74:

40 ab < 0.4923 L - 1.47 il
2 ab 5 0.493 > ke 1.47 »
8 d 0.3674  0.4935 0.7445 0.46 0.34 1.4

34 ab - 0.4936 - - 1.53 A
14 ab 3 0.500 L - 2

49 ab % 0.500 S = 1.41 .

58 ab - 0.5006 k " 1.35 =

33 ab = 0.5064 & = 1.59 =

27 ab & 0.5067 i - 1.50 -

23 ab = 0.507 = = 1230 -

The photometry of RR Lyrae stars in the Draco dwarf galaxy by Baade and
Swope (1961) was used by Nemec (1985a) to search for RRd stars in the system.
Previously Goranskij (1982) had identified three RRd stars in the system, but Nemec
found seven further members of the group. He derived the physical characteristics
of these stars and compared them with those of the double-mode RR Lyrae stars
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in the Galaxy. The periods and period ratios (0.7448-0.7466) are consistent with the
simultaneous radial pulsation in the fundamental and first overtone modes. The aver-
age beat mass is shown to be 0.65 M@ for nine stars, and 0.55 Mg for the tenth
star (V165). Metal abundances for the stars, estimated from their position in the pe-
riod-amplitude diagram, suggest that V165 is more metal rich than the other nine.
The Draco stars are indistinguishable from the RRd stars discovered in M15 and
M3. The first nine stars belong to Oosterhoff type II, while the tenth belongs to
Qosterhoff type I stars. The data for the RR Lyrae stars of the Draco dwarf galaxy
in the mixed-mode period range are presented in Table 9.

Table 9. RR Lyrae stars of the Draco system in the mixed-mode period range

Var Type Py P P, /P, Ay Ag Ay/Ag
97 c 093148 - = o"s0 - “
121 c 0.3365 A S 0.84 - &
165 d 0.3580 094807 0.7448 0.55 0%33 1.7
113 c 0.3627 - - &7 - -
173 c 0.3695 - = 0.77 - -
b c 0.3844 - > 0.64 - :
190 d 0.3965 0.5315 0.7460 0.66 0.31 2.1
83 d 0.4008 0.5372 0.7460 0.59 0.40 1.5
169 d 0.4031 0.5405 0.7458 0.59 0.29 2.0
143 d 0.4032 0.5401 0.7466 0.54 0.21 2.6
34  abBl 5 0.5451 - - 0.81 .
72 d 0.4071 0.5460 0.7457 0.52 0.32 1.6
138 d 0.4077 0.5468 0.7456 0.58 0.18 3.2
156 d 0.4087 0.5486 0.7450 0.57 0.26 2.2
11 d 0.4110 0.5510 0.7460 0.61 0.26 2.3
136 ab - 0.5549 : r 0.96 %
163  abBl . 0.5605 - - 0.90 -
112 d 0.4284  0.5742  0.7458  0.54 0.27 2.0
177  ab - 0.5924 . = 0.80 .
184  abBl - 0.5944 o i 1.04 e
189  ab - 0.5944 > - 1.06 "
75  abBl - 0.6027 - - 0.74 -

The candidates for double-mode oscillation in the Ursa Minor dwarf galaxy
were investigated by Nemec (1984) using van Agt’s (1967, 1968) photometry, and it
was found that V44, V49, V57, V58 and V83 might be double-mode pulsators, but
more accurate photometry is needed to derive the period ratios of these stars and
to estimate their masses.
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5. Conclusions and comments

i) The RRd stars are of fundamental importance when investigating the physi-
cal properties of RR Lyrae stars. According to the idea first presented by Jorgensen
and Petersen (1967), it is possible to use the period ratio to derive a mass for each
star. It is noteworthy that there is no significant discrepancy among the beat, evolu-
tionary and pulsation masses of the RR Lyrae stars whereas there is a mysterious
mass anomaly for the double-mode Cepheids.

ii) Both of the Oosterhoff type clusters may have a fairly large number of
double-mode RR Lyrae stars (e.g. M15 - type 11, 1C 4499 - type I). This suggests
that double-mode pulsation may be a stable mode of pulsation. The theoretical time
ccale of mode switching is too short to explain the existence of the large number of
RRd stars. The constancy of the modal content of the RRd stars in M15 during a
twenty year interval has been proved by Kovdcs, Shlosman and Buchler (1986).

iii) The above notwithstanding, there are clusters (e.g. w Cen) which contain
many RR Lyrae stars with a pure overtone only and pure fundamental periods, but
no double-mode stars. Nemec, Linnell Nemec and Norris (1986) try to explain this
fact by the higher rotational velocities of stars in those clusters. Cox (1987) deals
with this peculiarity by assuming that the helium abundance of the RR Lyrae stars
of these clusters is too small to produce double-mode pulsation.

iv) The periods of the first overtone pulsation of RRd stars are in the inter-
val 0.35 to 0.45 day, but not all the c type stars of the same cluster in that period
interval are doubly periodic. There exist some ab type stars with strongly repetitive
character (i.e. pulsating only in the fundamental mode) in the mode-mixing period
interval. These stars have a shorter period than the Jongest RRd fundamental period
observed or than the period calculated from the longest, observed pure overtone pe-
riod if we assume a reasonable value for the period ratio (see Tables 6-9). The
simultaneous occurrence of ab, ¢ and d type stars in the mode-mixing period inter-
val raises some problems.

v) In all cases of RRd stars investigated so far, the dominant mode of pulsa-
tion is the first overtone. The amplitudes of the first overtone pulsation of the RRd
otars are about the same as the amplitudes of the pure overtone pulsation and are
about twice as large as the amplitudes of the pulsation of RRd stars in the fun-
damental mode. Cox, Hodson and Clancy (1983) suspect that "the shorter periods
have more overtone content with larger AYA( than for longer periods", but the modal
content in each double-mode RR Lyrae stars seems to be unchanged over two de-
cades.

The possible relationship between double-mode and Blazhko stars was dis-
cussed in detail by Nemec (1985a). Here 1 should like to stress some problems 1
think important.



i) The frequency of Blazhko stars is greater among RRab variables of shorter
period, viz. near or in the period interval of double-mode RR Lyrae stars. It is,
however, somewhat disturbing that nor all the RRab stars have Blazhko effect in or
near that interval. Long-period ab type stars (as was first noted by Smith, 1981) are
usually non-Blazhko stars.

i) The frequency of Blazhko variables in each cluster is around 25-30%. At
the same time the frequency of RRd stars may vary from 0 to about 15% (e.g. in
w Cen there are many Blazhko and no RRd stars, M15 contains many Blazhko and
many RRd variables). Concerning this fact Nemec, Linnell Nemec and Norris (1986)
remark that "the presence of Blazhko stars in a system does not necessarily imply
that RRd stars will be present, although both types of variables may be stars in the
process of switching modes".

iii) The interpretation of the period-amplitude diagram of Blazhko stars (see
Figure 3) may encounter some difficulties. Moreover, the amplitude of the lowest
maximum of a Blazhko cycle may vary over some years.

iv) If the Blazhko phenomenon were in some way related to the double-mode
pulsation or some mode-switching process, one would expect that some relationships
should exist among the different parameters characterizing the Blazhko effect (P, PB,
As, etc.).

v) The behaviour of the long period cycle (four-year cycle in RR Lyr) raises
a special problem. Do these long cycles have some relationship with other parame-
ters of the Blazhko effect?

Even though the double-mode pulsation of RR Lyrae stars is well understood,
the basic mechanism responsible for the amplitude modulation is unknown. More
theoretical work is needed to get an idea about the physics of the Blazhko effect.
Moskalik’s (1986) recent work on the internal resonances, which may cause ampli-
tude modulation, raises some hope. Nevertheless the oblique rotator hypothesis (Detre
and Szeidl, 1973; Cousens, 1983) still seems to be a reasonable means of explaining
the Blazhko effect.
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DEPENDENCE OF THE PERIOD AND AMPLITUDE FLUCTUATION
OF RR LYRAE STARS ON THE BLAZHKO PERIOD

S. Kany6
Konkoly Observatory, Budapest, Hungary

Abstract

The topic of this note is the dependence of some parameters on the
‘Blazhko period in a selected sample of RR Lyrae stars. It is shown that
there is a certain correlation between the size of the period noise and the
frequency of RRab stars with Blazhko effect.

The more luminous field RRab stars (brighter than 12 mag) offer the most
advantageous sample for considering the distribution and the stability of the Blazhko
effect in the Blazhko gap. The Blazhko gap is the period interval in which all sec-
ondary periods produced by the Blazhko effect can be found. In this note we select
the more luminous field RRab variables because these have been observed for about
50 years and the observed points are evenly distributed along this relatively long pe-
riod of time. _

There are three relationships by means of which we can consider the above
mentioned situation:

=8 A-AA/Z relative amplitude variation of the fundamental period, where AA
is the amplitude variation and A is the averaged fundamental amplitude.

- o% is the mean square value of the phase fluctuations

o: =ff2\r(f)df i

where y(f) is the probability density function of the f phase fluctuation. It was shown
by Baldzs-Detre and Detre (1965), that standard deviation dF derived from the struc-
ture of O-C curves of the variable stars is an important parameter of the period in-
stability of variable stars.

The fundamental period (Po), the Blazhko period (PB) and 6,+0, are listed in
Table 1 for a selected sample of RRab stars.

The 6, -PB relation is shown in Figure 1. The protruding three points issue
from RRab stars which have double secondary amplitudes and periods (RW Cnc)
or have a variable secondary amplitudes (XZ Cyg). The third point (RV Cap) has
a special long secondary period. The dependence of &, on the P is not remarka-
ble. The phase fluctuations o for stable RR Lyrae and other kinds of variable stars
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Table 1
Var. Po(d) PB(d) : GF(Z) 8
Z CVn 0.654 22 .7 0.25 0.46
SZ Hya 0.537 25G8 0.40 0.50
RW Cnc 0.547 29.9 - 0.92
AR Her 0.470 31.6 - 0.30 0.40
RR Lyr 0.567 40.8 0522 0.36
RW Dra 0.443 41.7 0.38 0.40
XZ Cyg 0.466 57.0 0,25 0.29
XZ Dra 0.476 170 0.09 0+.25
RV UMa 0.468 90.1 0.02 0:33
AR Ser 03575 108.4 - 0.57
"RZ Lyr 0.511  116.7 0.04 0.42

RV Cap 0.448 2255 0.10 0.76

&

10 RV:Cnc

| RV Cap
il XZ Cyg %
0,61 x
XX x

04 * x 2

021

) - 50 100 150 200 day Ry

Fig. 1

were calculated by Baldzs-Detre and Detre (1965). It was demonstrated that the aver-
age EF for stable RRab is very low, less than 0.1%, whereas 6F for those with
Blazhko effect exhibits a value which is about five times greater.

The distribution of oF of RRab stars with Blazhko effect inside the Blazhko
gap was earlier considered by Kanyé (1975) and it was demonstrated that there was




69

some correlation between oy, and Pg (Fig. 2 ). There is a trend to get higher values
of oy for shorter Pp, that is to say the period noise of variable stars of shorter PB
is greater than that of longer one. This result is in accordance with the frequency
of brighter RRab with Blazhko effect in the Blazhko gap ( Fig. 3 ). The most popu-
lated portion of the Bkashko gap is the shorter period side (PB<70"), where oy, gets
a relatively great value.

0.4

03+ c\

0.2

0.1 X PR 7
'/’ %

Fig. 2

o

8 "f-l

50 100 150 200 day R

Fig. 3
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The main points of this note are as follows.

Let us suppose that op phase fluctuation or period noise of RRab is amplified
by the perturbing influence of the Blazhko effect. It is suggested by Figure 2, that
the appearance of the Blazhko effect in an RR Lyrae is due to a considerable per-
turbation that develops typically on the shorter side of Pg of Blazhko gap. If o is
smaller, the smaller perturbation yields a smaller chance of forming Blazhko effect.
If op becomes smaller, the PR secondary period becomes longer. A possible explana-
tion may be that because the longer Pp period consists of more pulsation events
than does the shorter Pg, so the accumulated higher period noise during the longer
PB stands a chance of producing Blazhko effect (Ashby 1956). However, this suspi-
cion requires confirmation by considering an enlarged sample of variable stars.
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THE AMPLITUDE EQUATION FORMALISM
APPLIED TO STELLAR PULSATIONS

J. R. Buchler
Physics Department, University of Florida, Gainesville, Florida, USA

Abstract

The assumptions underlying the amplitude equation formalism are
discussed. The successes of the formalism in describing the nonlinear be-
havior of the classical Cepheids (Bump Cepheids, RR Lyrae) are reviewed.
Further challenges which consist in describing the behavior of the more
dissipative stars such as the Semi-Regulars and the Irregulars are briefly
discussed.

1. Introduction

Amplitude equations have been used for quite a while in diverse areas of phys-
ics, such as plasma physics, nonlinear optics, fluid dynamics. In applied mathematics
they are known as normal form equations (Guckenheimer and Holmes 1983). In astro-
physics they have also been used for a number of years (e.g., Dziembowski 1982,
Takeuti and Aikawa 1981, Regev and Buchler 1981). There exist a variety of ways to
derive amplitude equations. Their form, which depends on the nature of the physi-
cal problem, is often trivial to write down. The difficulty generally lies in relating
the coefficients which appear in the amplitude equations to the original physical sys-
tem and in computing them ab initio, a process which often involves overwhelming
algebra. However, useful astrophysical results have been derived from the mere knowl-
edge of the form of the appropriate amplitude equations. A general derivation of
the amplitude equations and their coefficients from the original partial differential
system (of hydrodynamics and heat transfer) in the context of radial stellar pulsa-
tions has been given by Buchler and Goupil (1984) and can readily be generalized
to the nonradial case as well. An alternate, very elegant derivation can be found in
Coullet and Spiegel (1984) although their amplitude equations have some subtle differ-
ences with ours. :

2. The dimensional reduction technique and amplitude equations

In the following I shall discuss the general conditions of validity of the dimen-
sional reduction techniques which lead to amplitude equations. I will do that in the
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context of radial stellar pulsations. The hydrodynamical equations in Lagrangean form
are given by

d®R/d? = -4aR? aplom - Gm/R? (1)
T ds/dt = - sl/om 2)
aRYam = (4mp)' 3)

L = (4vR%? (ac/3c) (aTYom) (4)
p =pms) , ()]
k = «(p 8) (6)

where R(m) denotes the distance from the stellar center of that spherical shell, which
contains an amount of mass m and s(m) is the specific entropy at m. In our realis-
tic models the equation of state p(ps) and the opacity «(ps) are complicated func-
tions as they take into account the ionization of hydrogen and the two ionic states
of helium; they have to be evaluated through a numerical solution of the Saha equa-
tion. In the models of interest to us convection does not play a dominant role and
diffusive heat transport has been assumed in equation 4.

A model is said to be in full equilibrium when all time-derivatives in equations
1. and 2 vanish. If we introduce the velocity

dR/dt = v (N

then the partial differential system can be cast into a first order system. If we also
introduce deviations from equilibrium for the radius, 8R(m), for the velocity, sv(m),
and for the entropy, 8s(m), and define a deviation vector in their product space, i.e.
|z(m)> = (&R, bv, &), we can cast the original system into a very compact form

d/dt |z> = A |z> + N2 |zz> + N3 |zzz> + .. ! (8)

In equation (8) we have expanded around equilibrium. The spatial operators, A, N2,
N3, etc., denote the linear, quadratic, cubic, erc., contributions. In practice one dis-
cretizes the star into N mass-shells so that the quantity |z> becomes a 3N-dimen-
sional vector. The operator A becomes a non-selfadjoint 3N by 3N matrix.

Implicit in equation (8) is the first assumption which one is the weak nonlinear-
ity.
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In order to proceed we need to examine the spectrum of the linear eigenvalue
problem associated with system (8). Introducing a time-dependence of the form exp(ot)
we obtain

Ala> = oaq |la> (9a)

<a|lA = oa <a , (9b)

(we note in parentheses that because of the non-selfadjointness of A the lefthand
eigenvectors <a| are not just hermitean conjugates of the righthand |«>, and one
needs to use a dual basis of eigenvectors). Because A is real the eigenvalues are
either purely real (secular and thermal modes) or they come in complex conjugate
pairs (vibrational modes). i :

The second assumption is that we can split the modes into two groups; the first
group contains the very stable modes, sometimes called slave-modes, for which
= Re(s) is very negative whereas the second group contains those modes for which
|| is small. We shall call the latter marginally stable and unstable modes the princi-
pal modes. The situation is schematically depicted in Figure 1.
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Fig. 1. Schematic representation of the spectrum in the complex plane. The
modes within the strip delineated by dashed lines are the principal modes,
whereas the others are the slave modes.

When both assumptions are satisfied one can play off the weak nonlinearities
against the weak dissipation and obtain some balance at a small but finite satura-
tion amplitude. This is the gist of asymptotic perturbation methods and of the re-
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sulting amplitude equation formalism. The same two assumptions underlie the formal-
ism of Coullet and Spiegel.

Other small parameters may exist in the problem, such as the nearness to a
resonance (detuning parameter) and need to be taken into account in the derivation
of amplitude equations. (The disregard of a resonance would lead to divergent coeffi-
cients in the amplitude equations.)

We shall not discuss here the dimensional reduction method, but simply quote
the results. The amplitude equations are of the general form

dao/dt = oo ao + essential nonlinearities ({ai}) (10)

day/dt = o1 a1 + essential nonlinearities ({aj})

]

daydt = oi aj + essential nonlinearities ({aj}) .

where the order of the system depends on the number of small parameters, the so-
called co-dimension. The form of the essential nonlinear terms is determined by the
nature of the small parameters. Our approximation to the solution is given by

|z(t)> = 3 ai(t) |«i> + nonlinear terms . (Ela1

In lowest order the pulsation thus appears as the linear superposition of pulsa-
tions in the principal modes with time-dependent amplitudes. The latter, which by
assumption are slowly varying, obey nonlinear amplitude equations. The higher order
terms contribute to the Fourier components necessary to yield the actual, more com-
plicated, behavior of the system. These higher order effects, however. do not deter-
mine the essence of the dynamics. The dimensional reduction method and the omission
of "nonessential" terms in the amplitude equations has facetiously been illustrated by
Coullet (1981) as follows in Figure 2. The essence of the dynamic is captured in low
order by the formalism, but nonessential details are disregarded.

—> 3

Fig. 2. The dimensional reduction method.
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The dimensional reduction method is more than a mere truncation of a modal
expansion (such as the famous Lorenz system). It takes into account the deforma-
tion of the dynamic due to the presence of the slave modes. This is schematically
illustrated in Figure 3. The horizontal and vertical axes represent the spaces Rp and
Rs, spanned by the eigenvectors of the principal modes and of the stable modes, re-
spectively. After very short-lived transients the system moves on the principal manifold
M which is tangent to the space spanned by the principal modes for small ampli-
tudes.

Fig. 3. Schematic representation of the spaces of the principal modes Rp and
the slave modes Ry and of the manifold of the dynamic M.

One of the nice features of the amplitude equation formalism is that its basic
quantities, namely the amplitudes and their phases, can be directly related to those
obtained from a Fourier analysis of observations or of numerical hydrodynamics. One
of its limitations is that it is limited to the description of those situations in which
the amplitude modulations are slow compared to the basic pulsation.

In the following 1 shall review some of the successes of the amplitude equa-
tion formalism in the study of nonlinear radial stellar pulsations. The application to
the nonradial case is discussed by Dziembowski (1988).

2.1 RR Lyrae

The majority of the RR Lyrae stars pulsate either in the fundamental mode
(RRa and RRb), in the first overtone (RRc) or in both of these modes simultaneously
(the so-called double-mode RR Lyrae, RRd). Some also exhibit the Blazhko effect
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(Szeidl 1988). Since there seem to be no low-order resonances' inside the range of
interest of RR Lyrae, Buchler and Kovdcs (1986b) used the nonresonant amplitude
equations for just two modes to see if the general "modal" selection could be un-
derstood in the framework of amplitude equations. They truncated the amplitude
equations at the lowest (cubic) nonlinearities. The corresponding amplitude equations
are given by

dA/dt = kA + ReQo A® + ReT, AB? | (12a)
dB/dt = «;B + ReQ; B> + ReTi BA? | (12b)
dbo/dt = wo + ImQo A% + ImT, B (12¢)
de/dt = w1 + ImQi B? + ImTy A> (12d)

where we have separated the amplitudes from the phases,
a(t) = A(1) exp(ip) . (13)
The lowest order solution for the surface radius, for example, is then

8R « (1) = (A(1)/2) exp(ido(t)) + (B(t)/2) exp(ipi1(t)) + cc. (14)

where the phases ¢ contain a rapidly oscillating part o and a slowly varying one
(egs. 12c, d).

The result of the study of Buchler and Kovacs (1986b) is that with the assump-
tion of the negativity of the cubic terms the observed modal behavior could easily
be understood in terms of the fixed points of the amplitude equations. They have
also shown that a discriminant determines whether either double-mode behavior or
fundamental and first overtone pulsations occur. Further recent studies of these ampli-
tude equations can be found in Dziembowski and Kovdcs (1984) and Verheest (1987).
Although these studies were very encouraging they remained qualitative.

In order to assess the quantitative usefulness of amplitude equations in the con-
text of the nonlinear ‘pulsations of RR Lyrae, Buchler and Kovdcs (1987a) have per-
formed a comparison of numerical hydrodynamic computations with the amplitude
equations. A stellar model in full equilibrium is perturbed and its subsequent hy-
drodynamical evolution is followed numerically for some time. Taking a purely phe-
nomenological approach Buchler and Kovécs then fit the coefficients of the amplitude
equations (12) to match the hydrodynamical behavior. Amplitudes and phases are ex-
tracted from the latter through a time-dependent Fourier analysis.
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The results of that study are as follows: (1) the fit is almost indistinguishable
from the hydrodynamics. (2) The location and stability properties of the final attrac-
tor, predicted from the fitted coefficients agree remarkably well with those obtained
from a direct computation of the stable nonlinear pulsations. This is illustrated in
the following figures for an RR Lyrae model of 0.65 solar masses, a luminosity of
60 solar luminosities and an effective temperature of 7000K.

Figures 4a and 4b show the temporal behavior of the amplitudes A4 and B of
the fundamental and the first overtone, respectively, for two different initializations
with 2% and with 109% overtone perturbation. The first evolution leads toward a pul-
sation in the fundamental mode and the second evolution toward an overtone pul-

sation.
0.20 ———— 1 —— P38 .
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Fig. 4. Temporal behavior ot amplitudes of the fundamental mode (4) and of
the first overtone (B) for two different initializations. The dashed lines are
derived from the hydrodynamical computations and the solid line represents the
fit with the amplitude equations.

In Figures 5a and Sb we show the corresponding behavior of the phases ¢a and
4 of the two modes. Finally in Figure 6 we show the same two evolutions in an
amplitude-amplitude plot. It can clearly be seen that one evolution is towards the
fundamental attractor (on the horizontal axis) and the other is towards the overtone
attractor (vertical axis).

The conclusion is thus reached that nonresonant amplitude equations for just
two modes, the fundamental and the first overtone, truncated at the lowest order
(cubic) nonlinearities give a remarkably good description of the nonlinear pulsations
of RR Lyrae models.

One of the highlights of the amplitude equation formalism is that it yields new
insight into the pulsation mechanism on a more fundamental level (topology of phase-
space, bifurcations of attractors, efc.).
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Fig. 5. Temporal behavior of the phases for the same models as in Figure 4.
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Fig. 6. Amplitude-amplitude plot for the two initializations of Figures 4 and 5.
One evolution is towards the fundamental pulsation (fixed point on the hori-
zontal axis) and the other towards the first overtone pulsation (fixed point on

the vertical axis).
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I would also like to mention in passing that the amplitude equation formalism
has guided Kovdcs and Buchler (1988) in their search for and discovery of numerical
hydrodynamical RR Lyrae models which pulsate simultaneously in the fundamental
and in the first overtone modes with constant amplitudes and phases.

A so far unsolved problem in RR Lyrae concerns the explanation of the
Blazhko effect which consists of a slow periodic modulation of the amplitude of the
fundamental pulsations in some RRa and RRb stars (Szeidl 1988). Their possible ex-
planation in terms of a 2:1 resonance of the fundamental with a higher overtone
(Buchler and Kovdcs 1986a, Moskalik 1987) awaits confirmation with numerical hy-
drodynamical modelling.

2.2 Bump Cepheids

It has been known for quite a while (Ludendorff 1919) that Cepheids have sec-
ondary bumps on their lightcurves in the vicinity of a 10d period, and that the lo-
cation of these bumps moves with the period forming the so-called Hertzsprung
progression. Payne-Gaposhkin (1947) already noticed that the Fourier phases show
abrupt features near 10d. Christy (1966) was able to reproduce this bump behavior
with numerical hydrodynamical models and, for their explanation, he invoked some
echo mechanism which however is fraught with difficulties. Progress was made when
Simon and Schmidt (1976) noticed that the linear models go through a resonance of
the type 2wo=w2 in the vicinity of a 10d period. Later Simon and Lee (1981) and
Simon and Teays (1982, 1983) plotted the phase difference ¢21=¢d2-2¢1 versus the
period and found an almost universal curve, both for the light curves and for the
radial velocities of Cepheids.

It was then suggested by Klapp, Goupil and Buchler (1985; see also Buchler and
Kovdcs 1986a) that the striking behavior of the phases could be explained with the
help of amplitude equations appropriate for the case of a 2:1 resonance

da/dt = opa + Pg a*b , (15a)
db/dt = otb + Py a® . (15b)

Klapp et al. (1985) performed an ab initio computation of the quadratic coeffi-
cients Pp and P; from the hydrodynamical equations for a series of Cepheid stellar
models and computed the fixed points of the amplitude equations which correspond
to the nonlinear pulsation with constant amplitudes. The models were chosen to be
as close as possible to Cepheid models whose hydrodynamical behavior had been
studied and Fourier analyzed by Simon and Davis (1983). (We note in passing that
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the amplitudes and phases of the amplitude equations are in direct correspondence
with those of a Fourier fit to the observational data or to hydrodynamical output.)
The overall agreement was excellent, but two major discrepancies showed up: first,
the amplitude equations do not have any fixed points beyond approximately 10d and,
second, towards low periods the amplitudes and phases deviate from the numerical
ones.

The remedy for both of these problems was shown to be the inclusion of cubic
terms in the amplitude equations (Buchler and Kovdcs 1986a). Since an ab initio
computation of cubic terms is very tedious and has not yet been attempted they per-
formed a parameter study with cubic terms and showed that for reasonable values
one can get good qualitative agreement with the observation and with the numeri-
cal models.

It is interesting to note that the mere existence of bump Cepheids and the
shape of the ¢21 curve put some contraints on the coefficients of the amplitude equa-
tions, and thus on the models themselves, namely «o+x2<0, 2o +k2<0, and
q =tan(arg(Py/P1)) < 0.

The amplitude equations give a nice ¢21 versus period relation if one keeps
their coefficients constant and one varies only the detuning parameter. Real Cepheid
stars come with a variety of structures and even the P2/Po versus period relation
necessarily has some spread. It is therefore remarkable that Cepheids show such a
clean characteristic behavior of ¢21 which must be an indication that they form a
rather homogeneous group.

The amplitude equation formalism gives the following physical picture of the
occurrence of the bump progression: For low periods the saturation of the ampli-
tude occurs through the cubic nonlinear terms, i.e. it is provided by the nonlinear
effects of the fundamental mode itself and all the slave modes. As the 10d period
is approached the resonance singles out the second overtone among the other slave
modes and this mode starts to become a principal mode itself. The quadratic terms
provide the energy transfer to the linearly stable second overtone mode. While this
happens the saturation amplitude of the fundamental mode gets depressed. Near 10d
a bifurcation occurs in which the stable fixed point of the amplitude equations merges
with an unstable fixed point and disappears. Beyond the bifurcation point the sat-
uration is provided by the cubic terms. At first the resonance still'has an effect on
the fixed point, but as one moves to higher periods its influence diminishes and the
saturation is again provided by the cubic terms as on the other far side of the res-
onance.

The systematic behavior of the Cepheids can be understood from the fived points
of the amplitude equations. However, for other parameter values different solutions
can exist. One type of solution, which arises from a Hopf bifurcation of the fixed
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point, gives rise to periodically modulated amplitudes and phases. Another type of
solution is chaos which gives rise to erratic modulations of the amplitudes and phases.
These solutions may well be the explanation of the Blazhko effect mentioned in the
previous section.

3. Other possible applications

3.1 Coupling with secular modes

The dimensional reduction method shows that, in principle, it is necessary to
include all the marginally stable or unstable modes in the principal manifold, includ-
ing the secular modes which have small decay-rates. The reason we seem to be able
to get away without them in the previous description of RR Lyrae and Cepheids
may be one of degree. If the coupling between the vibrational and the secular modes
is weak, as one may expect because of a poor overlap between the corresponding
eigenvectors, then the effect of these modes cannot be very large. However, there
may be cases where these secular modes play a nonnegligible role and give rise to
a small regular or irregular modulation of the amplitudes and phases.

The opposite amplitude equations for the coupling of a vibrational mode with
a couple of secular modes are given (Buchler 1985)

dA/dt = xoA + QoA’ + Pi biIA + P2 b2A | (16a)
dbydt = ob1 + R1A® + Sibi® + Tib2® + Uibibz (16b)
dbo/dt = o2b2 + R2A% + $b2” + Tabi® 4+ Usbib2 . (16¢)

The observed signal, say for the surface radius is then given by

8R « (t) ~ A(t) cos(wt) + bi(t) + ba(t) . (17)

As expected the secular modes add a slowly varying constant component to the
oscillatory signal. Whether this coupling is important and leads to observable con-
sequences awaits numerical modelling. This is a considerably more involved project
than the usual pulsational calculations. The reason is that only the envelope is in-
volved in the pulsations whereas the secular models extend into the core and the
burning shells.
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3.2 Semi-regular and irregular variability

Models of red giant envelopes which have been studied in the context of
planetary nebula formation (Keeley 1970, Tuchman, Sack and Barkat 1979, Fox and
Wood 1982) have shown that because of the extended regions of partial ionization
these models can be near a dynamical instability, i.e. the fundamental frequency of
oscillation can be very small. At the same time numerical hydrodynamical computa-
tions show a very erratic temporal behavior. This can be understood in terms of
amplitude equations. Let us assume for simplicity that only two vibrational modes
are involved, namely the fundamental and an overtone. Because of the nearness of
the dynamical instability one now has an additional small parameter, namely wo, in
addition to the two growthrates. The smallness of wo causes the two corresponding
eigenvectors to become linearly dependent and the nonresonant amplitude equations
(12) have to be modified to read (Buchler and Goupil 1988)

dx/dt =y (18a)
dy/dt = <20y - (w0 + ko) X + kix + k2 [b|> + ksxy ,  (18b)
db/dt = (iw1 + x1) b + ks xb | (18¢)

where the real variables x and y correspond to the fundamental mode and b de-
notes the complex amplitude of the overtone.
The surface radius, for example, then behaves like

8R« (1) ~ x(1) + |b(t)| cos (wit) + higher order terms . (19)

The system of equations (18) again has fixed points, limit cycles and chaotic
solutions. A typical chaotic solution is shown in Figures 7a and 7b.

Of interest is the fact that during part of the irregular cycling the amplitude
B=|b| of the pulsation vanishes. In other words the pulsations continuously grow
and then completely decay away. In Figure 8 we have plotted a sample of the tem-
poral behavior one may expect of the surface radius.

It is clear that to get this kind of intermittency, which seems to occur in the
Irregular stars, one needs the strong coupling between either a vibrational mode
and one or several real modes or between two or more vibrational modes one of
which has a very small frequency.

The red giant envelopes of interest here are generally very nonadiabatic and
the growthrates are not small. This violates one of the assumptions of our amplitude
equation formalism. However the formalism is of an asymptotic nature and its
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Fig. 8. Sample of the reconstructed signal, e.g. a surface radius variation.

range of validity is therefore expected to be large, at least in a qualitative sense. It
is therefore not clear a priori to what extent amplitude equations can describe the
behavior of these models. Numerical hydrodynamical work is in progress to test the
predictions of the amplitude equations.
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4. Conclusions '

In this review we have shown that the amplitude equation formalism can givé
an excellent qualitative as well as quantitative description of the nonlinear radial pul-
sations of weakly dissipative stellar models such as the RR Lyrae. Two major exten- -
sions await the formalism.

Dziembowski (1988) reviews the important progress that has been achieved with
the use of amplitude equations in the understanding of nonradial pulsations. This
problem is much more complicated than the radial one for a variety of reasons. First
of all there are difficulties with the linear problem which have to do with resolving
the dissipative structures on the scale of the wavelength of the modes in the pre-
sence of convection. Otherwise, no reliable linear growthrates can be obtained. A
second poblem has to do with the large dimension of the principal manifold because
of the large number of modes which seem to be excited. And, finally, one can have
spatial as well as temporal chaos with the chaotic formation, propagation and disso-
lution of nonlinear structures.

The second challenge is to extend the dimensional reduction method to situa-
tions where the growthrates are not small. Recent numerical hydrodynamical results
(Buchler and Kovdcs 1987b; Buchler, Kovdes, and Goupil 1988) have shown that the
models can undergo period doubling bifurcations and tangent bifurcations on their
way to chaotic behavior. In these models the "modulation” of the amplitudes and
phases occur therefore on the same timescale as the pulsation. What is particularly
remarkable in these models is that the dynamic seems to be embeddable in only
three dimensions. In other words there seem to exist three generalized coordinates
which fully describe the complicated behavior of these models. The challenge is to
find what these three coordinates are and what "amplitude equations" they satisfy.

This work has been supported by NSF (AST86-10097).
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THE HISTORY AND DEVELOPMENT OF NONLINEAR STELLAR
PULSATION CODES*

C. G. Davis
Physics Division, Los Alamos National Laboratory, Los Alamos, USA

Abstract

This review is limited to the history and development of nonlinear
stellar pulsation codes and methods. Starting with the digital computer and
the method of pseudo-viscosity, that made it feasible to solve the equa-
tions of hydrodynamics coupled with heat flow, till the present time with
our super computers and new techniques of hydrodynamics the discussion
proceeds. The narrative includes examples of practical interest in the ap-
plication of these numerical methods to problems in stellar pulsation such
as Cepheid mass discrepancy, the delineation of the RR Lyrae instability
strip, and the question of the development of double-mode pulsation as
observed in Cepheids, RR Lyrae and other variable stars.

1. Introduction

The history of nonlinear pulsation codes really begins with the development of
the computer. Previous to this time, Baker and others had established one-zone mod-
els of pulsation but it wasn't until the 50s when the digital computers became avail-
able that a solution to a set of nonlinear difference equations of coupled hydrodynamics
and radiation flow were possible. Previous to this time Eddington, Zhevakin, Cox
and Whitney, and others had determined that the de-stabilization in stars, that caused
the observed pulsations, was due to the ionization of hydrogen and helium in the
atmospheres of such variables as Cepheids, RR Lyrae and W Virginis. The finite
difference equations of nonlinear hydrodynamics were first used on the CPC, the
Eniac and the Maniac at Los Alamos. This work was the genesis of the early pul-
sation codes of Christy and Cox, et al. The first nonlinear pulsation calculations were
probably done on the IBM 704. We will discuss these carly developments as well as
the more recent improvements in hydro and radiative transfer that have made im-
portant contributions to our understanding of the properties of stellar pulsation.

In Section 2, we discuss the pioneering work of Christy and Cox as they battled
with machine language coding and the IBM 704 computers. In Section 3, we discuss

* Work performed under the auspices of the U.S. Department of Energy
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the improvements to solve the equations of multigroup transfer coupled with hy-
drodynamics and the development of a relaxation scheme to study limiting amplitude
and improvements in the hydrodynamics (non-Lagrangian). In Section 4, we discuss
the present status of nonlinear stellar pulsation and its application to details of light
curves, "resonance” and the vexing problem of double-mode pulsation. Finally in Sec-
tion S, we detail some possible improvements to present codes and the need for
time dependent convection and the possibility of two-dimensional models.
References will be limited to the Los Alamos, Goddard Conferences (LG), to
the original publication of the various codes and a review article by J. Cox (1974).

2. Early Developments

With the advent of the computer and the establishment of methods to solve
the equations of hydrodynamics (pseudo viscosity) the first nonlinear pulsation cal-
culations were made. Some of the pioneers were Christy (1964) at Cal Tech and Cox,
Brownlee, and Eilers (1969) at Los Alamos. Their codes were based on the early
work of Richtmyer and Von Neumann and the development of the method of pseudo
viscosity, which made it possible to automatically treat the growth of compression
waves into shocks in the nonlinear equations while maintaining stability. Christy
studied questions of mode transition, limiting amplitude and the Hertzsprung sequence
for mass determination. Developing a series of RR Lyrae models he determined the
transition from the first overtone at the blue edge of the instability strip through an
either/or condition to the fundamental pulsators at the red edge of a strip. The idea
of a transition line from the 1st overtone to fundamental in period was confirmed
by some more recent calculations of Stellingwerf. These lines are sensitive to pseudo
viscosity as well as the addition of radiation pressure in the equations. Christy at
first did not include the radiation pressure in his equations, which shifted his tran-
sition line somewhat (LG-I). Another of Christy’s studies addressed the question of
the "bump" sequence as observed in Cepheid variables (Hertzsprung). Using a ser-
ies of Cepheid models he determined that the phase of the observed "bumps" de-
pended on luminosity in the Hertzsprung-Russell diagram in the following way,

mr = 0057 L (days),

where L is the luminosity in solar units. .

Following Christy's work Stobie (1969) completed a detailed study where he
considered the effects of zoning, pseudo-viscosity and the weighting of the opacities
on the bump phase, his results are generally in support of Christy. A more recent
report by Fadeyev and Tutukov (1981) supports these earlier results, which means
that the question of the Cepheid "bump" masses still remains.
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The Cox’s approached the problem of nonlinear pulsation from the idea of un-
derstanding the mechanisms of pulsation rather than to study the modes of pulsa-
tion in stars. In the Cox’s study, they included only a shallow envelope (10% of the
mass) in their models and limited the excitation to only the Helium region. The re-
sults of a study by Cox, et al. on the instability strip for Cepheids is discussed in
LG-2. The strip is expected to be wider than observed since they did not include
the effects of convection on pulsation, which limits the red edge of the strip. In their
detailed work on the mechanisms for pulsation, they studied the growth of pulsation
from noise for a Cepheid model called BK7, from Baker and Kippenhahn’s earlier
work. They initiated the model without any driving, except noise, and it started as
a first overtone pulsator. At some later stage, it switched over to the fundamental
mode of pulsation at which it stayed in until limiting amplitude. The switch-over may
have occurred due to a surge on the computer, at a time sooner than they might
have expected, around 350 periods in the fundamental. The maximum kinetic energy
in the first harmonic was 3.0x10% ergs as compared to 1.1x10% ergs for the fun-
damental.

Other developments in nonlinear pulsation codes were pursued in these early
days by Aleshin (1964) and Hillendahl (1969). Aleshin apparently used a sinusoidal
inner boundary condition that artificially pumped his models while Hillendahl studied
the question of the shocks in the atmosphere of Cepheids but only to a limited ex-
tent.

3. Further Developments in Stellar Pulsation Codes

As a continuation of the work of Christy and Cox the author of this review
and J. Castor at Cal Tech began working on improved radiative transfer techniques
for use in the stellar pulsation codes. Castors approach was to use the integral
method of Schwartzschild while Davis applied the variable Eddington methods of
Freemen and Davis (LG-I).Castor was limited in machine-time and only completed
one cycle of pulsation with his radiative transfer code (Castor 1966). Bendt and Davis
(1971) on the other hand used as a boundary condition the flux and velocity from
the diffusion code to study the effects of frequency groupihg, zoning, and the weight-
ing of the opacities across the zone interfaces to establish models of Cepheids. The
results, in agreement with Castor, showed that the effects of improved radiative trans-
fer in models of Cepheids was minimal. Following this initial work we studied mod-
els of RR Lyrae and W Virginis stars using standard boundary conditions, (i.e.
u(inside) =0.0) instead of results from the diffusion code. The result for SW An-
dromedae was an improvement in U-B vs. phase when compared to the observations.
For W Virginis the results were more dramatic (see J. Cox’s review 1974). Using a
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model first developed by Christy, Davis noted that shocks formed in the atmosphere
of the star resulted in a shoulder on the light curve not present in the diffusion
model. This model was also an improvement in that alterations in light maximum
and minimum occurred in contrast to only variations in light minimum in Christy's
diffusion model. Following the work of Christy and Castor, Hill (1972) studied trans-
fer effects in the extended atmosphere of Christy's RR Lyrae model 5G. He found
that a series of shocks formed that could be related to observable lines. The obser-
vation of more than one shock forming in the atmosphere of an RR Lyrae model
is supported by the earlier work of Hillendahl.

With the ability to do frequency resolved radiative transfer, Cox and Davis
looked into the question of the proper averages for the colors from B-V to obtain
the temperature of pulsating stars. The results for a model of RR Lyrae supports
the observers' method of taking <B>-<V> averages to obtain the temperature
from the standard relation of Oke, Giver, and Searle where the opacity was the
standard King 1 A and for Cepheids a new opacity table (CD1) was developed that
contained molecules and gave good agreement with the Kraft relation. Other appli-
cations of improved radiative transfer techniques were made by Spangenberg, using
non-equilibrium diffusion, and Karp, using a modified Henyey method (LG-1).

A study conducted by Vermury and Stothers (1978) and Stothers (LG-4) con-
cluded that Carson opacities and/or the use of tangled magnetic field may explain
the "bump" sequence using evolutionary masses.

During this development period a method to relax the equations to the peri-
odic solution was devised by Baker and Von Sengbusch (1969). The periodic solution
of a stellar envelope is calculated using an eigenvalue method. From the resulting
Floquet matrix, one obtains the conditions of growth for the various modes of pul-
sation contained in the model. For an RR Lyrae model Von Sengbusch found the
blue edge of the instability at limiting amplitude. This method looks very powerful
for studies in modal content of pulsation. Stellingwerf (1974) modified the relaxation
method to make it more adaptable to the initial value technique. For problems in
which e-folding times are long, the method is clearly needed to reduce the number
of integrations. Using this method Stellingwerf (LG-1) determined the transition lines
and growth rates for a-series of RR Lyrae and beat Cepheid models. For a model
with M=0.878M@, L=63Le, and Tef=6500K, he believed he had established a
mixed-mode model, but later attempts by A. Cox et al., using DYNSTAR (LG-4)
were unsuccessful. It appears that efforts to find double-mode pulsators using non-
linear methods have proven to be limited to regions in the Hertzsprung-Russell di-
agram outside those accepted from linear theory for either/or pulSation. Apparently
the Stellingwerf code uses an adiabatic spring as an inner boundary condition. Cox
(LG-3) found that effects due to this boundary condition appeared in other zones
that could have caused problems in the results.



91

Realizing that standard Lagrangian codes did not resolve the light curves very
well a new approach using non-Lagrangian techniques was developed. The original
work on dynamic zoning was carried out by Castor but applied by Castor, Davis and
Davison (1977) to Cepheid pulsation. Before this work one usually used the calcu-
lated velocity profiles for comparison to the bumps observed in the Hertzsprung
sequence. The dynamic zoning algorithm improved the light curves considerably. The
ability to place zones in the ionization region, which is spatially very thin, results in
smoother light curves. Recently, a similar code using temperature instead of mass,
as the dependent variable was developed by Aikawa and Simon (1983). Details in
the light curves of long period Cepheids have been seen in the results of Moffett
and Barnes. For X Cygni, the non-Lagrangian code gives a "dip" as observed on the
rising part of the light curve (0.85 in phase). Interestingly enough the resulting mass
is the evolutionary mass (7.0M@) (LG-3).

" Methods for treating convection in nonlinear Lagrangian codes have not changed
much since the earlier work of Cox et al, (1969). The standard mixing length theory
has been modified somewhat by the addition of time dependent terms but still a
number of parameters must be fixed to establish the proper effects due to convec-
tion. It has been accepted that convection has a small effect near the blue edge of
the instability strip but it probably causes the occurrence of the red edge. More re-
cent studies on the effects of convection on the pulsational development of the non-
linear models will be discussed in the next section.

4. Present Status in Nonlinear Pulsation

Probably the most exciting part of this review is the discussion of the present
status and interest in methods of nonlinear pulsation as applied to problems of "res-
onance", double-mode pulsation and mass discrepancies. We will consider the various
efforts to attack these problems with the use of analytic means, amplitude equations
and the use of the very sophisticated relaxation direct integration methods. Probably
the most exciting area of research in stellar pulsation at present is the search for
the cause of nonlinear development of multimode pulsation as observed in RR Lyrae,
beat Cepheids, 6 Scuti and possibly other variable stars in the instability strip. Since
the early attempts of Stellingwerf (see Section 3) many have tried but few have
succeeded in producing double-mode pulsation with their nonlinear codes. One ex-
ception is the recent model of Buchler and Kovacs with M =0.85M@, L=35L¢@, and
Teff=6200K. The period ratio of Py/Pg = 0.756 does not agree with ratio of 0.746
as observed for this class of double-mode RR Lyrae stars. To obtain this result they
had to make a careful selection of the artificial viscosity parameters. We should men-
tion again that attempts to duplicate Stellingwerfs results were unsuccessful (see Sec-
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tion 3). Recently, Cox and Ostlie have included a form of time-dependent convec-
tion in their code (LG-7) with the expectation that the effects of convection will re-
duce the amplitude and enhance the occurrence of double-mode pulsators. At present
their convective flux differs from Stellingwerfs in an unexplained manner. A good
review on various techniques applied to convection is given by Toomre (LG-5). A
new approach to nonlinear pulsation is the use of an asymptotic method by Buchler
and Goupil and along with Klapp (LG-7) they have studied the occurrence of reso-
nance in Cepheid pulsation and find good agreement with a set of DYN calculations
done by Simon and Davis (LG-5). Davis, Kovdcs and Buchler (LG-7) have studied
an RR Lyrae model that contains fundamental and first harmonic modes in pulsa-
tion. Initiating the model in both fundamental and first harmonic amplitudes (20
km/s) and without "pumping" they observed the detailed growth to limiting ampli-
tude. Using the Maximum Entropy Method (MEM), they analyzed the results at
various stages to study the modal content of the model, The method provides an ac-
curate practical test for assessing whether a model has relaxed to a steady pulsation
and produces time-dependent amplitudes and phases that can be analyzed within the
amplitude equation formalism of Buchler and Goupil.

A recent study of interest to this author is that by Aikawa and Simon (1983)
where they Fourier analyzed a convection model of an RR Lyrae star, due to Stelling-
werf and a radiative transfer model due to Hill (1972). They conclude that the com-
parisons, for the light and velocity amplitudes, from the convective model agree with
their results for a radiative (diffusion) model but the results for the radiative trans-
fer model are in better agreement with observations for RRab variables. They had
incorrectly assumed that no other radiative transfer models existed for RR Lyrae
(see Davis 1975). This result though supports the suggestion by Davis that transfer
effects are important in models of RR Lyrae stars.

In these studies on modal selection, we need to mention the work of Uji-iye,
Aikawa, Ishida, and Takeuti (LG-7). They found that increases in artificial viscosity
dissipated the kinetic energy of the first overtone mode much more than the fun-
damental mode. They were also unsuccessful in constructing a double-mode pulsa-
tor. Their Cepheid models had masses from 6.71Me to 3.5Me with constant luminosity,
L=2280Le and Tefr=5850K.

It appears from these studies that our codes are missing some relevant physics
in order to model double-mode pulsators. In this review, many suggestions' were made
that should be included in one code. First, we should use the direct integration
methods coupled with relaxation methods and then add improvements to resolve the
shock and ionization fronts (like dyramic zoning) and also improve the radiative
transfer prescription as well as the time-dependent convection. With multiprocessing,
vectorization, and the new super computers we may be able to assemble a code of
this nature in the near future.
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Recently, we have also seen a re-birth in an interest to understand the light
“curves of BL Her and W Virginis stars (not to mention & Scuti and Ap stars). Re-
cent work by Bridger on W Virginis, and Fadeyev and Fokin on BL Her and W Vir-
ginis stars (LG-6), have resulted in new insights into the structure of these pulsators.
From this reviewer’s point of view, we believe that improved radiative transfer tech-
niques are needed in order to properly model Pop II class variables (higher lumi-
nosity to mass). Radiative transfer is needed in models of these stars to handle the
extended atmospheres that results from the stronger shocks that transit during cer-
tain phases. The & Scuti and Ap stars seem to require methods of non-radial pulsa-
tion that are not discussed in this review.

Another improvement in our understanding of modal interactions was gained
by Whitney and others in the observation that the "echo" description of Christys for
the bump Cepheids is consistent with the resonance ideas of Simon and others.

5. The Future of Stellar Pulsation Codes

With the era of multiprocessing and higher speed computers at hand, the possi-
bilities of many improvements to our nonlinear stellar pulsation codes exist. Improve-
ments in radiative transfer techniques, including the treatment of line transfer, for a
more direct comparison to the observations is now possible. The area I believe needs
the most improvement and results can already be seen in other applications of astro-
physical interest, is in the use of improved hydrodynamics. For one-dimensional La-
grangian codes we can expect improvements in methods of adaptive zoning, mass
advection and shock treatments. The recent work of Winkler, Van Leer, Woodward
and others is indicative of the improvements possi‘ble. The more robust adaptive
mesh schemes of Winkler along with improved advection along the lines of MUSCL
(Van Leer) or PPM (Woodward) should be incorporated into our nonlinear pulsa-
tion codes. The adaptation of Gudonov's method to improve the shock structure is
also a possibility. In this new era of development, we can consider thousands of
zones or adaptive meshing to resolve the ionization regions and the shocks, as well
as improved radiative transfer and the use of tensor viscosities in the treatment of
shocks. In the near future, two- and three-dimensional codes will be available with
capabilities to do rotation and treat magnetic fields. The time-dependent convection
problem may be more tractable in two or three dimensions (Dupreé). Methods for
treating turbulence are being formulated in two-dimensional codes at present and
new techniques such as free Lagrange or Arbitrary Lagrangian Eulerian (ALE), may
make the treatment of turbulence and mixing possible.
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MULTIPLE-MODE PULSATION IN & SCUTI STARS

D. W. Kurtz
Department of Astronomy, University of Cape Town, South Africa

Abstract

The & Scuti stars are reviewed. It is emphasized that few successful
frequency analyses have been done on multi-periodic, non-radially oscillat-
ing & Scuti stars. Some successful analyses are discussed. Future obser-
vational effort needs to be on intensive multisite campaigns. Future
theoretical effort needs to model specific stars for which there are frequency
solutions.

1.Introduction

In the last 12 years helioseismology, the study of the interior structure of the
sun by the analysis of its surface oscillations, has blossomed. Conferences devoted to
the topic and its relative, asteroseismology, are now an annual affair of which this
workshop is a part. The spectacular successes of helioseismology (see Christensen-
Dalsgaard, these proceedings; Toomre 1986; Christensen-Dalsgaard 1986) have led to
the desire to apply the theory developed for the sun to other stars.

It is probable that the 8 Scuti stars are the most numerous nondegenerate pul-
sating stars in the galaxy which can presently be observed. They are Population I, A
and F main sequence and giant stars which show light variations with amplitudes of
a few mmag up to many tenths of a mag and periods in the range of about 30
minutes up to many hours. Some of the 8§ Scuti stars are singly or doubly periodic
radial pulsators, but most are multiperiodic and pulsate in a mixture of radial and
non-radial modes. They constitute at least 20% of all A stars; the low amplitude pul-
sators are much more numerous which means that as photometric accuracy improves,
the fraction of A stars known to be 8 Scuti stars will increase.

Many reviews of these stars have been written in the last dozen years. The
most extensive are those of Fitch (1976), Breger (1979), Eggen (1979) and Wolff (1983).
Shorter reviews are those of Breger and Stockenhuber (1983), Kurtz (1986) and
Shibahashi (1987). Lists of & Scuti stars and references to studies of individual stars
can be found in Breger (1979), Eggen (1979) and Halprin and Moon (1983) and, of
course, the indispensable Astronomy and Astrophysics Abstracts. With the exception
of Shibahashi (1987), the above reviews emphasise observations rather than theory.
Theoretical discussions, stability analyses, discussion of the role of resonances, and
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models can be found in Lee (1985), Andreasen, Hejlesen, and Petersen (1983a,b),
Dziembowski (1977, 1980, 1982), Fitch (1981) and Stellingwerf (1979).

The theoretical asteroseismologist should see the 8 Scuti stars as a gold mine:
many of them are naked-eye stars and easy to observe, they are common, many pul-
sate in non-radial modes and some pulsate in many non-radial modes simultaneously.
This latter characteristic is most important since it is the variety of spherical-har-
monic modes which gives us the ability to resolve the interior structure of a pulsat-
ing star.

Yet asteroseismologists pay scant attention to the 8 Scuti stars, The reason for
this is simple: there are few 8 Scuti stars with solved frequency spectra, The most
pressing need in & Scuti star research is for solved frequency spectra of multiperi-
odic, non-radially oscillating, single, non-magnetic, normal abundance 8 Scuti stars.
In Section 5 I make a specific suggestion for a multi-site observing project to do
this.

Before that, however, I would like to look at the developments in the field
over the last dozen years, the complications which make the study of individual &
Scuti stars difficult, and the details of the few successful frequency analyses which
have been done.

2. Twelve years ago...

Twelve years ago IAU colloquium 29, "Multiple (sic) Periodic Variable Stars",
was held here in Budapest. Fitch (1976), in his review of the 8 Scuti stars at that
meeting, said that the controversies at that time centred "on three specific questions:

1) Are & Scuti stars really periodic, or only quasi-periodic? ’

2) Are tidal modulations responsible for the slow cyclic variations observed in
many of these stars...?

3) Are there any real physical differences between [dwarf Cepheids and &
Scuti stars] ...?"

The first question remains unresolved, although I have repeatedly emphasised
the difficulty in distinguishing between unresolved frequencies in an inadequate data
set on a multi-mode pulsator and modes with lifetimes short with respect to the
time-span of the observations (Kurtz 1980, 1986). Fitch (1976) made that same point
12 years ago; both of us have expressed the prejudice that the 8 Scuti stars will
probably all be shown to pulsate in stable modes with frequencies which only change
on evolutionary time-scales. Breger and Stockenhuber (1983) reviewed the & Scuti
stars at a recent conference and in the published discussion which followed their
paper Breger ruled out the possibility of "meandering periods" based on the evidence
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that frequency analyses of & Scuti stars show peaks in the periodograms which are
no wider than expected from the spectral windows.

Paparé and Kovdcs (1984) analysed 43 hr of photometry of HR 4684 and sug-
gested that the periodograms of their data supported the contention that the ampli-
tudes of the pulsation frequencies in HR 4684 may change significantly on a time-scale
as short as days. They point out that this is much too short a time-scale for evolu-
tionary changes and is also much shorter than theoretically calculated excitation and
damping times (see Dziembowski 1977 and Lee 1985). So they suggest that perhaps
non-linear coupling between resonant modes might be the cause of the mode changes.

Antonello et al. (1985) analysed another small data set for HR 4684, assumed
stable periods, and concluded that three frequencies are present in the variations of
this star, although the authors are uncertain amongst many possibilities what those
three frequencies are. Nevertheless, they conclude that their data are consistent with
Dziembowski’s (1980, 1982) calculations of non-linear coupling between resonant
frequencies. Dziembowski suggests that such mode-coupling may explain the profound
difference of the multi-mode pulsation of many of the & Scuti stars and the single
or double mode pulsation of a few & Scuti stars and the RR Lyrae stars and
Cepheids.

There is other support for the idea that some & Scuti stars may pulsate in
modes with short life-times. It is widely accepted that solar S-min oscillation modes
have lifetimes less than a few weeks so one might suspect that this could be true
for 5 Scuti stars, too. The amplitudes of the observed & Scuti pulsation modes are
orders of magnitude greater than the amplitudes of the solar oscillations, however,
and different driving mechanisms are almost certainly involved.

Matthews, Kurtz and Wehlau (1987) have hundreds of hours of observations of
the rapidly oscillating Ap star, HD 60435; their data tend to suggest that the many
modes in this complex star may have lifetimes which are only a week or so. If that
is possible in a rapidly oscillating Ap star, then why not in a 8 Scuti star? However,
other rapidly oscillating Ap stars have frequencies which are stable over the several
years since their discovery (see my review of the rapidly oscillating Ap stars else-
where in this volume) and the possibility remains that this may also be true for HD
60435. :

Where does that leave us with, respect to Fitch’s first question: Are & Scuti
stars really periodic? I continue to maintain that, with sufficient data, stable peri-
odicities will be found in all of the & Scuti stars; i.e. 1 suggest that the 8 Scuti stars
pulsate in radial and non-radial eigenmodes with frequencies which only change on
evolutionary time-scales. This dogma is not very good science, however, since it is
impossible to disprove. If a frequency analysis of a very large data set fails to sup-
port my hypothesis, I can simply claim that more data are needed. Paparé and Kovdcs
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(1984) allude to this when they point out that even with over 100 hr of high-quality
data, I was unable to find a frequency solution for the light variations in HD 52788
(Kurtz 1981). Matthews, Kurtz, and Wehlau (1987) had little success in finding stable
periodicities in the rapidly oscillating Ap star HD 60435 even with many hundreds
of hours of observations from observatories on two continents.

Fitch’s second question: "Are tidal modulations responsible for the slow cyclic
variations observed in many of these stars...?" also remains unanswered and little at-
tention has been paid to this idea for some years now. Fitch and Wisniewski (1979)
dealt with it extensively in their analysis of the & Scuti star 14 Aur which is also a
single-lined, non-eclipsing spectroscopic binary with an orbital period of 3.788568 day
and with & Del spectral peculiarities (Kurtz 1976). Balona and Stobie (1980a) rejected
the tidal modulation hypothesis for 1 Mon based on their radial velocity observa-
tions.

I would say that tidal modulation may still be a working hypothesis for pulsat-
ing stars in close binary systems, but that observational attention is best spent now
on trying to solve the frequency spectra of single & Scuti stars. When we have a bet-
ter understanding of the single pulsators, we can then turn our attention to the more
complex binary systems which may show tidal interactions.

Fitch’s third question, "Are there any real physical differences between [dwarf
Cepheids and & Scuti stars]...?" is answered. Breger (1980) says, "The majority of Dwarf
Cepheids resemble the Population I & Scuti stars in nearly all respects... A small sub-
group [of the dwarf Cepheids], led by SX Phe, show[s] systematically low metallici-
ties, high space motions, and low luminosities, and deviate[s] from the observed and
theoretical period-gravity relation in the low mass direction." To summarise that: most
of the stars previously called Dwarf Cepheids are just high amplitude & Scuti stars,
but there are a few Population II pulsators in the & Scuti instability strip.

In my opinion our primary goal in the near future in & Scuti star research is
to obtain complete frequency solutions for as many multimode pulsators as possible.
In Section 3 I discuss some of the complications which make many & Scuti stars un-
suitable for this purpose. In Section 4 1 present a small selection of successful
frequency analyses which have already been done and in Section S5 I propose a
specific research project.

3.Complications

It is not known what limits the pulsational amplitudes in & Scuti stars nor is it
known what factors select modes. There are some clear correlations. The largest
amplitude pulsators tend to be giant stars; the largest amplitude pulsators tend to
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be slow rotators. But then giant stars tend to be slow rotators. Some slowly rotat-
ing giant stars in the & Scuti instability strip show little or no variation.

Most large amplitude & Scuti stars pulsate in only one or a few modes; most
small amplitude pulsators are multi-periodic, but there are some which are singly pe-
riodic. Antonello (1983) and Antonello, Fracassini, and Pastori (1981) have found some
statistical correlations among the various physical parameters of the § Scuti stars, but
for any particular star it is not possible to predict pulsational characteristics based
on any combination of known physical parameters.

Two further complications in the & Scuti instability strip are the existence of
the Am and Ap stars (see the appropriate chapters in Wolff (1983) for general dis-
cussions of these stars). The Am stars have atmospheric abundance anomalies, ro-
tate slowly, are almost all in short period binary systems, and constitute at least 1/3
of all the stars in the & Scuti instability strip; at A8 they constitute 1/2 of the stars.
In general, Am stars do not pulsate. Some giant Am stars (5 Del stars) pulsate (Kurtz
1976) and three marginal Am stars are known to pulsate (Kurtz 1978, 1984), but it
has long been thought that classical Am stars do not pulsate. (A classical Am star
is one in which there are more than 5 spectral subtypes difference between the Ca
K-line classification and the metal-line classification.) Even this is no longer true.

A few months ago I discovered a pulsating classical Am star, HD 1097. Houk
(1982) classifies this star A3/SmF0-F5 which means that there are 10 subtypes differ-
ence between the K-line and metal-line types. Strémgren photometry of HD 1097
gives b-y=0.238, m1=0.326, c1=0.463, and p=2.729 (Hauck and Mermilliod 1985)
which also indicates that this star has very strong metallicity. An analysis of light
curves obtained over 5 hr on two nights in 1987 July shows that a single period,
P=81.17+0.05 minutes, with a semi-amplitude of 4.52 +0.15 mmag fits both light
curves coherently. These observations will be discussed in detail in a future publica-
tion.

The Ap stars, which constitute <10% of the stars in the & Scuti instability strip,
are mostly magnetic Si and SrCrEu stars. In general these Ap stars are not & Scuti
stars, but there are exceptions to this which are discussed by Weiss (1983a,b) and
Kreidl (1987). There are also the rapidly oscillating Ap stars (Kurtz, this volume).

The largest amplitude & Scuti stars are slowly rotating giant stars, but on the
main sequence the slowly rotating stars are all, or mostly, Am and Ap stars which
generally do not pulsate. It is thus very difficult to separate the effects of rotation
and metallicity on pulsation and pulsation amplitude.
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4. Successful frequency analyses

A completely successful frequency analysis is one in which all of the frequen-
cies present in the observations (light curves, radial velocity curves, line-profile var-
iations) have been identified and nothing is left in the periodogram of the residuals
except white noise. In addition, there must be good confidence that aliases have
caused no confusion and that the signal-to-noise was sufficient for secure frequency
identifications. This means that an analysis of a new set of observations will produce
the same results — the standard definition of a successful experiment.

This sort of success is rare in & Scuti star research, but fortunately is not ab-
solutely necessary in order to make progress in our physical understanding of these
stars. It is sufficient to identify only some of the frequencies with confidence that
new observations will confirm those identifications. This has been done in a number
of cases for the higher amplitude 8 Scuti stars.

4a AC And and VZ Cnc

A good example is the study of AC And by Fitch and Szeidl (1976). They find
that the star pulsates with three principal frequencies which show good agreement
with models when identified with the fundamental, first overtone and second over-
tone radial modes. While I consider Fitch and Szeidl’s analysis of AC And to be
successful, in that the three principal frequencies which they identify are probably
correct, it is clear that there is a lot of variation in the light curves of AC And
which their frequencies do not account for. They fitted their light curves with a fifth-
order combination of f1, f2 and f3 along with the harmonics and cross-terms between
those three frequencies, and yet their fit deviates from the observations by up to
0.05 mag.

It is often implicitly assumed in discussions of the largest amplitude & Scuti
stars that the two or three frequencies present in their variations, which can be iden-
tified with radial modes, along with their harmonics and cross-terms are a complete
description of the variations in the observations; i.e. no additional, low-amplitude
non-radial modes are present. Cox, King, and Hodson (1979) have found that the ob-
served frequencies in double-mode & Scuti stars match the theoretical ones well for -
stars in a post-main sequence stage of evolution with reasonable masses. More in-
formation about the structure of these stars could be extracted, however, if non-radial
modes were also excited. One wonders, for example, if that might not be the case
in AC And where the Fitch and Szeidl’s fitted curve deviates by such large amounts
from the observations. Their 0.05 mag deviations are larger than the peak-to-peak
amplitudes of most of the non-radially oscillating & Scuti stars.
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To test for the presence of non-radial modes in the large amplitude & Scuti
stars, a large set of high accuracy observations is needed. These observations must
be sufficient to avoid severe alias problems and must cover the entire light curve so
that a periodogram analysis can identify the harmonics and cross-terms without as-
sumptions about their presence being necessary. Many of the earlier observations of
high amplitude & Scuti stars are not useful for this purpose since observations were
predominantly made on the rising branches of the light curves only.

A successful analysis of this sort has been made by Cox, McNamara, and Ryan
(1984). They analysed 16 nights of new observations of VZ Cnc obtained in 1983.
They made no assumptions about the frequency content in the light variations and
used a combination of periodogram analysis and least-squares fitting to find all of
the frequencies in their data. They found two principal frequencies with a ratio of
0.80 and many harmonics and cross-terms between those two frequencies. Impor-
tantly, no other frequencies were found above a noise level in their periodogram of
2 mmag; all of the variation in VZ Cnc is explained well by the two principal frequen-
cies, their harmonics and cross-terms. The light curve constructed from those frequen-
cies fits the data to an accuracy of 8 mmag which is probably close to the error in
their observations.

Fitch and Szeidl (1976) list VZ Cnc as pulsating in the first and second radial
overtones based on the 0.80 ratio between its two principal frequencies. Cox,
McNamara, and Ryan (1984) find that same frequency ratio, but reinterpret the pul-
sation modes to be the fundamental and first overtone radial modes in a star in
which considerable helium depletion has occurred in the outer envelope due to grav-
itational settling. (4Andreasen, Hejlesen, and Petersen (1983a,b) also discuss helium-set-
tling in & Scuti stars.) This suggestion worries me: helium-settling is the usual
explanation for the near exclusion between the & Scuti stars and the Am and Ap
stars. How can helium-settling be significant in such a large amplitude & Scuti star
as VZ Cnc and still be the reason why Am and Ap stars either do not pulsate or
only do so with very low amplitudes?

4b Al Vel

Al Vel was at one time considered to be the prototype of the Population Il
pulsating stars in the & Scuti instability strip. Balona and Stobie (1980b) analysed
three nights of simultaneous BVRI photometry and radial velocities of Al Vel to
conclude that it is pulsating in the fundamental and first overtone radial modes and
is a normal Population I star. Their Wesselink analysis gives a radius of about 3Re.
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In this case, however, it has not been demonstrated that the two principal
frequencies are all that are present in the variations. Balona and Stobie only had
three nights of observations of Al Vel so they relied on Simon’s (1979) frequencies;
Simon’s two principal frequencies were assumed to be Walraven's (1955) two frequen-
cies — all of the other frequencies he found came from assuming that the harmon-
ics and cross-terms of f7 and f> are present in the data. No search for those frequencies
was done in the manner of Cox, McNamara, and Ryan’s (1984) analysis of VZ Cnc.

4c & Sct

The prototype of this class of stars, 5 Sct itself, is a multiperiodic variable which,
in spite of its apparent brightness, still does not have a solved frequency spectrum.
Fitch (1976) could not get independent identical solutions to Fath’s 1935-1938 data
and his own 1972-1973 data; he even considered that the two principal frequencies
might not be strictly constant. :

Balona, Dean and Stobie (1981) obtained simultaneous BVI and radial velocity
observations of 8 Sct on two nights in 1976 and 1977. When they combined their
radial velocity measurements with previous ones, they found that the two principal
frequencies, fo=5.160765 day”’ and f1=5.354018 day!, along with the first harmonic
of f, fitted all of the observations to o=1.9 km s which they felt was close to the
observational error.

By analysing the phase shift between V and B-V, Balona, Dean and Stobie con-
cluded that f, is unequivocally due to radial pulsation and fi is due to quadrupole
pulsation. Measurements of line profile variations in 8 Sct by Campos and Smith
(1980) and Smith (1982) are in agreement with these mode identifications.

There are many other frequencies present in the variations of & Sct, however
(Fitch 1976). When one examines the frequencies which Fitch found and their fit to
his data, it is clear that he does not have a complete frequency solution. In my opin-
ion, that frequency solution could be obtained from a high accuracy, multi-site set
of observations and a project to obtain such observations is encouraged.

4d 1 Mon

1 Mon is the best case of a multi-mode, non-radially pulsating & Scuti star with
well determined frequencies and mode identifications which show an understandable
pattern. Balona and Stobie (1980b) analysed simultaneous BVRI photometry and radial
velocities, which they obtained on three nights in 1977, along with the V observa-
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tions of Shobbrook and Stobie (1974) and Millis (1973). They found six frequencies,
f1="7.346146 +0.000002 day'], f2=7.475268 +0.000002 day", f3=7.217139+0.000007
day“, f1+f2, 2f1 and 2f2 which fit the observations with a standard deviation of ¢ =9
mmag per observation. This standard deviation is substantially greater than the ex-
pected errors in Shobbrook and Stobie’s and Balona and Stobie’s data of about 3
mmag indicating that those six frequencies are not a complete description of the var-
iations of 1 Mon.

Balona and Stobie identify fi as a radial mode; f> and f3 they find are due to
a dipole mode with m=-1 for f2 and m = +1 for f3. Smith (1982) finds line profile
variations which are consistent with these mode identifications. The non-equal split-
ting of these three frequencies is consistent with the central frequency not being the
m =0 component of the dipole oscillation. If second order terms in the rotational
splitting of a dipole mode in 1 Mon are not important, then the m =0 component
of the dipole must be separated from the observed radial mode by 0.000058 +0.000008
day']. This should be a powerful diagnostic of the internal structure of 1 Mon, but
to my knowledge it has not yet been exploited theoretically.

de (-)zTau

As 1 emphasised earlier, the most pressing need in & Scuti star research is for
solved frequency spectra for multi-mode non-radial pulsators, preferably with many
frequencies. It is the multitude of different non-radial modes which provides the dis-
cerning probe of a star’s interior. Recently Breger et al. (1987) have attempted this,
and possibly they have succeeded.

Breger et al. obtained observations of o’ Tau, a & Scuti star which is known to
be in a 140.728 day binary system. From calculations of light time effects on the
derived pulsation frequencies, they suggest that all of the light variations are due to
pulsation in the primary even though the secondary (1.1 mag fainter) is also in the
instability strip. The frequencies they derive are: f;=13.22970 day'l, A1=6.5 mmag;
f2=13.48090day”’, A2=2.7 mmag; f3=13.69362 day ', A3=4.0 mmag; and fa = 14.31756
day'l, A4=3.2 mmag. These frequencies fit the observations to an accuracy of v =3
mmag per observation which is close to the actual observational error. Thus the
authors suggest that they may have found the complete frequency set which describes
the light variations in 02 Tau. There are caveats to this, as usual, which the authors
discuss. Nevertheless, this is the best that has been done so far for a low-amplitude
multi-mode & Scuti star and Breger et al.’s frequencies now need theoretical inter-
pretation. Breger et al. give M =2Mgq, Teff=8200 K, log g=3.8, and My=0.5. Simple
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calculations of Q-values indicate that the frequencies must be associated with n =2
overtones.

5. A proposal for new observations of ® Tuc

Breger et al. (1987) have shown that the frequencies in multi-mode, non-radially
oscillating & Scuti stars can be solved if enough effort is put into obtaining the ob-
servations. To advance our understanding of these stars further we need many with
solved frequency spectra so that the patterns in the frequencies become evident. With
care and a judicious selection of program stars this should be possible.

© Tuc is a well studied southern 8 Scuti star which Stobie and Shobbrook (1976)
concluded changes frequencies on a time-scale as short as 1 day, but which I later
showed has at least one stable frequency (Kurtz 1980). I was unable to solve the
frequency spectrum in © Tuc with 70 hr of observations obtained on 21 nights in
1979, but most of that problem is due to the daily aliases inherent in observations
obtained from one site.

Furthermore, in retrospect, those 70 hr of observations are spread over 3 months
and only a few of the longest observing runs were over 5 hr. At the time I con-
sidered that to be a large data set; now I think it is not. What is needed for ® Tuc
is an observing run which is as nearly continuous as possible for two weeks which
will suppress the daily aliases, plus additional data from at least one observatory for
a longer period to resolve more closely spaced frequencies.

© Tuc transits at midnight at the end of September. With a declination of
8=-71° it can be observed all night, about 9 hr, from southern observatories. At a
minimum I propose to observe it from the South African Astronomical Observatory
from 1988 September 27 to October 10 and for another week in 1988 November. 1
would like observers who would like to join this observing project and who have
access to telescopes in the southern hemisphere to contact me to arrange the details
of the observing.

If we can get good contemporaneous coverage of © Tuc from Chile, South
Africa, and Australia or New Zealand for a time-span of two weeks, we should be
able to solve the frequency spectrum of this star. It is not known to have any spec-
tral- peculiarities, and hence should not have suffered hellum depletion which would
complicate modelling it. It is not known to be binary as 0% Tau and hence there
should be no confusion over which star is pulsating. It is bright and easy to observe
and is known to have amplitudes large enough to give a reasonable signal-to-noise
ratio.
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MULTIPLE-MODE AND NON-LINEAR PULSATION IN
RAPIDLY OSCILLATING Ap STARS

D. W. Kurtz
Department of Astronomy, University of Cape Town, South Africa

Abstract

The rapidly oscillating Ap stars are reviewed. Dipole oscillation modes
are identified in HD 6532 and HD 83368. Mode lifetimes are discussed
for HD 60435. A brief progress report on multi-site observations of
HD 24712 obtained in 1986 is given. Difficulties in obtaining the tempera-
tures and luminosities of the rapidly oscillating Ap stars are discussed.

1. Introduction

The rapidly oscillating Ap stars are high-overtone (n~10-30) p-mode pulsators
which mostly lie within or near the observed & Scuti instability strip. These stars are
all cool magnetic Ap stars with SrCrEu line strength peculiarities. Some are well
known oblique magnetic rotators and it is a reasonable presumption that they all
are.

Figure 1 is a plot of the position of the & Scuti stars in the HR diagram taken
directly from Breger and Stockenhuber (1983) onto which I have plotted schematic
positions for the rapidly oscillating Ap stars. 1 emphasize the uncertainty of these
positions. They have little meaning in luminosity and are also uncertain in tempera-
ture. My is calculated from scj in this diagram and all of the rapidly oscillating Ap
stars have sc1 indices which make them appear to lie on or below the main sequence.
This is almost certainly due to the effects of their abnormal line strengths on the c;
index and is not a true reflection of their luminosity. From the frequency spacing
observed in both HR 1217 “and HD 60435 we know they lie about 0.5 mag above
the main sequence (Shibahashi and Saio 1985; Muatthews, Kurtz, and Wehlau 1987).
From the spectral type of the companion to the visual binary HR 3831 we know
that it also lies about 0.5 mag above the main sequence (Kurtz 1982). Hence, for
convenience, I have placed the rapidly oscillating Ap stars 0.5 mag above the main
sequence in Figure 1, but this should not be taken too seriously.

The (b-y)o positions have been estimated from the Hp index where possible
since b-y is also affected by abnormal line strengths. Even so, there are indications
that the Hp index also underestimates temperature, especially for the coolest stars
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plotted. HD 101065 is the most extreme case where the Hp index would put it way
off scale to the right in Figure 1. T have plotted it as an open square near F0 since
there are other arguments that its effective temperature is near 7500 K (Kurtz and
Wegner 1979; Wegner et al. 1982).

Figure 1 really only shows that the rapidly oscillating Ap stars lie in or near
to the & Scuti instability strip. The (b-y)o positions are sufficiently uncertain that we
cannot conclude that the three stars which lie cooler than the red edge are truly
that cool. We also cannot conclude that HD 6532, the hottest rapidly oscillating Ap
star, is hotter than any 8 Scuti star, partly because of uncertainty in its temperature
and partly because of the uncertainty in the blue edge of the & Scuti instability strip
(the hottest & Scuti stars have relatively low amplitudes and hence are less likely to
be detected). That is unfortunate because if we knew that some rapidly oscillating
Ap stars lay well outside the & Scuti instability strip, that would have important im-
plications for their excitation mechanism.

\. .
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Fig. 1. The observed & Scuti instability strip taken dlrectlv from Breger and
Stockenhuber (1983) with the rapidly osc111atm Ap stars schematically plotted
as open circles (HD 101065 as an open squar% Consult the text before draw-
ing any conclusions.



109

It might be thought that atmospheric analyses of the rapidly oscillating Ap stars
could resolve the problem of their temperatures and luminosities. Because of their
extreme spectral peculiarities, however, this has not been possible to do with cer-
tainty. The temperature of HD 101065, the most difficult case, has been given to be
as low as 6000 K and suggested to be as high as 8000 K. Confident determinations
of the temperatures and luminosities of these stars will probably have to await ac-
curate parallaxes from Hipparcos or perhaps the Hubble Space Telescope. Since many
of the rapidly oscillating Ap stars are naked eye stars, their parallaxes will be easily
measurable from space; that project should have a high priority.

The periods of the rapidly oscillating Ap stars lie in the range 3.5-15 min and
the semi-amplitudes of the light variations due to individual pulsation modes are less
than 6 mmag, generally much less — most are less than 1 mmag. Most of the ob-
servations of these stars have been of their light variations, but recently Matthews et
al. (1987) have succeeded in measuring radial velocity variations with a semi-ampli-
tude of about 200 m s in HR 1217. Baade and Weiss (1986) have computed ex-
pected spectral line variations in an oblique pulsator and Schneider et al. (1987) have
searched for such line variations in two rapidly oscillating Ap stars, « Cir and y Equ.
The reason for the observational emphasis on the light variations is that noise levels
of 0.05-0.2 mmag are obtainable for these high frequencies which, with semi-ampli-
tudes of mmag, give good signal-to-noise.

Recent reviews of the rapidly oscillating Ap stars have been given by Kurtz
(1986), Weiss (1986) and Shibahashi (1987). For a more detailed guide to the litera-
ture on rapidly oscillating Ap stars, consult those reviews; Kurtz and Weiss empha-
size the observations while Shibahashi gives a more thorough theoretical discussion.

There are several characteristics of these stars which make them particularly in-
teresting in the context of this workshop: 1) They are multi-mode pulsators; in two
cases, HR 1217 and HD 60435, high-overtone p-modes of alternating even and odd
I are clearly present as in the sun. 2) Many of the rapidly oscillating Ap stars show
the presence of harmonics of their principal frequencies. Non-linearities at such low
amplitudes have never been seen in the & Scuti stars. 3) The rapidly oscillating Ap
stars are oblique pulsators which gives us a unique view of their non-radial pulsa-
tions.

This last characteristic is particularly interesting and promises to allow unpre-
cedented probes of both the interior and exterior of these magnetic stars. Kurrz and
Shibahashi (1986) and Kurtz and Cropper (1987) have shown for HR 3831 and HD
6532, respectively, that these two stars pulsate primarily in oblique dipole modes. In
each of these cases it is possible to see the phase of the principal oscillation reverse
by = radians as the star goes through quadrature.
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Dziembowski and Goode (1985, 1986) calculate that it is the effect of the mag-
netic field on the pulsation modes which selects the magnetic axis as the pulsation
axis. The modes cannot be only axisymmetric (m =0) normal modes, however, as
Kurtz (1982) first presumed. A normal mode with the magnetic axis as the pulsation
axis is equivalent to a linear sum over m of all modes of the appropriate multiplet
aligned along any other axis (say, for argument's sake, the rotation axis). A single
normal mode should then drift with respect to the magnetic axis since the frequen-
cies of rotationally split m-modes are split by an amount slightly different from the
rotation frequency due to the effect of advection. Dolez and Gough (1982) pointed
this out and suggested that perhaps the lifetimes of the pulsation modes were short
with respect to the drift time and only modes currently in alignment with the mag-
netic field are excited to observable amplitudes.

Dziembowski and Goode (1985, 1986), Kurtz and Shibahashi (1986) and Shibahashi
(1987) argued that each pulsation mode in a rapidly oscillating Ap star gives rise to
a (21+1)2-multip|et of frequencies which keeps the pulsation axis and magnetic axis
aligned. The study of the fine structure of the frequencies in each multiplet should
yield information about the internal magnetic field strength in the star.

The excitation mechanism in the rapidly oscillating Ap stars is unknown. Since
it is possible that they all lie in the & Scuti instability strip, the simplest hypothesis
is that they are excited by the x-mechanism operating in the He Il ionization zone
as the & Scuti stars are thought to be. Dolez and Gough (1982) found excitation in
the 15th overtone (P =15 min) in a simple A-star model. If this is the case, though,
then why do the rapidly oscillating Ap stars pulsate in such high overtones and the
& Scuti stars in much lower ones? We might speculate that the magnetic field damps
the lower overtone modes in the Ap stars, but then the lack of a magnetic field
should not damp the higher overtone modes in the non-magnetic stars. I have searched
for high-frequency oscillations in some & Scuti stars without success. There are also
a few Ap stars which show & Scuti-like pulsation (Weiss 1983a,b; Kreidl 1987). How
do those stars manage to pulsate in low overtone modes in the (presumed) presence
of a global magnetic field?

Because of these problems Shibahashi (1983) and Cox (1984) suggested that the
rapidly oscillating Ap stars are excited by magnetic overstability. If this were the case
then we might expect to find rapidly oscillating Ap stars outside of the observed
& Scuti instability strip, especially hotter than the blue edge since the magnetic stars
extend all the way up the main sequence to the early B stars. The positions of the
rapidly oscillating Ap stars in Figure 1 suggest that some of them do lie outside of
the & Scuti instability strip, but from arguments given earlier, that is uncertain.

I have searched for rapid oscillations in many Ap stars much hotter than the
blue border of the & Scuti instability strip with only null results, but then these stars
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are inherently brighter than the cooler Ap stars. A look at Figure 1 shows that an
A0 main sequence star is about | mag brighter than an F0 main sequence star,
hence, at a constant pulsation energy, the FO star will have a signal-to-noise ratio
2.5 times greater than the AQ star.

Dolez, Gough, and Vauclair (1987) have suggested that helium concentrates at
the magnetic poles in the rapidly oscillating Ap stars sufficiently to drive pulsation.
In both their model and in Shibahashi’s magnetic overstability, the alignment of the
pulsation axis and magnetic axis is due to non-spherically symmetric driving at the
magnetic poles.

The question of the pulsation mechanism in the rapidly oscillating Ap stars re-
mains unanswered. Shibahashi’s (1987) most recent review of the rapidly oscillating
Ap stars contains a more extensive discussion of this question. In the year since that
review was written there have been many observational advances. In the following
sections I will summarise those new observations.

2. HD 24712 (HR 1217)

HR 1217 pulsates in six independent modes with frequencies which are approxi-
mately equally spaced (Kurtz and Seeman 1983). Shibahashi (1984), Gabriel et al.
(1985) and Shibahashi and Saio (1985) pointed out that these frequencies could be
interpreted as being due to pulsation in alternating even and odd /-modes with n~40.
Based on the assumption that the highest amplitude oscillations found by Kurtz and
Seeman were due to dipole modes, Shibahashi and Saio suggested that the even-/
modes were more likely to be radial than quadrupole modes based on the observed
frequency spacings, theoretical A star models, and analogy with the solar p-mode
spectrum. Kurtz, Schneider, and Weiss (1985) were able to show that none of the ob-
served frequencies is due to pulsation in a radial mode.

Because of the similarity of the pattern of alternating even and odd /-modes in
the amplitude spectrum of the variations in HR 1217 to that in the sun, it is very
important to try to solve its frequency spectrum. That task is complicated by the fact
that the natural frequency spacing is about 33 . Hz which is close to 3 day']. Thus
observations from a single site yield periodograms with frequencies and aliases hope-
lessly entangled. Kurtz's (1982) original analysis of this star suffered from this prob-
lem. HR 1217 also rotates with a period of Prot=12.4572+0.0003 day (0.92911 +0.00002
w Hz) (Kurtz and Marang 1987a) and all of the pulsation frequencies are amplitude
modulated with the rotation.

Hence, in order to solve the complex frequency spectrum of HR 1217, I or-
ganised an international collaboration to observe it as intensively as possible during
1986 October, November and December. That collaboration was successful. We (Kurtz
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et al. 1988) obtained 365 hr of new observations of HR 1217 from eight observato-
ries in Africa, Australia, Hawaii, North and South America and New Zealand. During
one time-span of 36 days we had a 32% duty cycle, i.e. we averaged 8 hr of obser-
vations per day, with only two gaps as long as 24 hr during that span. The 33 wHz
alias problem is almost eliminated in this new data set.

Analysis is now underway but, as of the time of this conference, it is not possible
to report conclusively on the results of that analysis. As a preview I can say, however,
that: 1) rotational sidelobes are observed. These may allow identification of the spheri-
cal harmonics of the pulsation modes and derivation of the rotational inclination and
the magnetic obliquity. 2) The frequency of highest amplitude is the central one near
2.687 mHz, not the two on either side of it near 2.652 mHz and 2.721 mHz as Kurtz
and Seeman (1983) found. If the central frequency is due to a dipole mode, then
the frequency spacings which were previously so problematic now make sense. 3)
There are indications of fine structure for the higher amplitude frequencies which
may be due to the resolution of different spherical harmonics of the same parity,
i.e. the resolution of /=1 and 3 or /=2 and 4, for example. If this is true, then we
will have measurements of the second-order terms in the asymptotic p-mode disper-
sion relation — a potentially powerful structural diagnostic.

Including the new observations of HR 1217, we have a total of 579 hr of pho-
tometric observations obtained over a 6-year time span. If we can phase the data
without alias ambiguity over the entire data set, then we will have a frequency res-
olution better than 100 pHz for the higher amplitude oscillations. This analysis should
be completed and ready for public viewing during the next year.

3.HD 83368 (HR 3831)

New observations of HR 3831 in 1986 have allowed Shibahashi, Kurtz, and
Goode (1988) to analyse all of the photometric observations obtained for this star
from 1981 to 1986 without any alias ambiguity. Table 1 gives the 7 frequencies they
derived.

The low frequency triplet, f1, f2 and f3, is due to an oblique dipole pulsation.
The proof of this lies in a plot of the pulsational phase of f3 versus rotational phase
which shows the =-radian phase reversals expected at quadrature (Kurtz and Shibahashi
1986). Shibahashi, Kurtz, and Goode (1988) show that this is the case over the en-
tire S-year time-span of the data they analysed.

Kurtz (1982) interpreted the high-frequency triplet, fa, f5 and fe, as the three
highest amplitude frequencies of a quintuplet associated with a quadrupole mode;
that interpretation is still valid in terms of the generalized oblique pulsator model
of Dziembowski and Goode (1985, 1986) and Kurtz and Shibahashi (1986).
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The seventh frequency derived, f7=3f3+ Q. An initial speculation is that f7 is
part of a frequency septuplet due to pulsation in an /=3 mode. Application of the
generalized oblique pulsator model (Shibahashi, Kurtz, and Goode 1988) leads us to
expect that 3f3-0 should be the highest amplitude frequency rather than 3f3+0 as
is observed.

Table 1. A non-linear least-squares fit of the seven frequencies determined for the
entire 1981-1986 data set for HD 83368

frequency Amplitude Phase
mHz mmag radians
£, 1.42395445%0.00000002 2.098%0.021 -3.109%0.014
) 1.43207097%0.00000003 1.708%0.021 1.488%0.017
f3 1.42801260%0.00000011 0.39610.021 -2.824%0.074
£,  2.85602537t0.00000011  0.419%0.021  -2.928%0.070
fs 2.86414166%0.00000023 0.189%0.021 1.999%0.155
fe 2.84790843%0.00000024 0.184%0.021 -1.102%0.159
f7 4.2880966410.00000041 0.108%0.020 -1.958%0.271
o= 1.9796 mmag
f3 - f1 = 4.05815%0.00011 pHz
fg - f3 = 4.05837%0.00011 pHz
£, - fg = 8.11694%0.00026 pHz = 2(4.05847%0.00013 uHz)
f5 - f4 = 8.11629%0.00033 pHz = 2(4.05815%0.00017 pHz)
((f4 - £6) - (f5 - £4))/2 = 0.33%0.21 pHz
(f3 - f1) - (f2 - f£3) = -0.22%0.16 pHz
2f3 - f4 = -0.17%0.25 pHz
f7 - 3f3 = 4.05884%0.00053 pHz

Af = ((£3-£1)+(£2-f3)+(£4-Fg)/2+(E5-£4)/2) /4 = 4.05829%0.00007 uHz
Q = 4.05829%0.00002puHz (Kurtz and Marang 1987b)

Note to Table 1: These parameters fit the relation
AB = T Ajcos(2nfy(t-tg)+ @) where tg = JD 2444600.00000 .
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Table 2. A non-linear least-squares fit of f, f2, f3 and f4 to the JD2446256-6367 data
for HD6532

E A (0]
mHz mmag radians

£1 2.396212%0.000002 0.98%0.02 0.57%0.09
) 2.402164%0.000002 0.74%0.02 2.45%0.08
£3  2.408116%0.000003  0.60%0,02 -1.39%0.15
f4 4.804299%0.000013 0.10%0.02  -0.17%0.60
o = 1.47 mmag

fy - fp = 5.952%0.004 pHz

fy - £ = 5.952%0.004 pHz

£, - 25 = -0.029%0.013 uHz

Q = 5.952%0.006 mHz (Kurtz and Marang 1987c)

Note to Table 2: These parameters fit the relation
AB = TAjcos(2m fi(t-tg)+e4) where tg = JD 2446256.00000

4. HD 6532

Kurtz and Cropper (1987) found an equally-spaced frequency triplet in the ampli-
tude spectrum of 90 hr of photometric observations of HD 6532 obtained in 1985
from the South African Astronomical Observatory and the Mount Stromlo and Sid-
ing Spring Observatory. By plotting the phase of the pulsation versus rotational phase
(determined from a new rotational ephemeris given by Kurtz and Marang 1987c),
they showed that a =-radian phase reversal takes place at quadrature and hence the
frequency triplet is due to oblique dipole pulsation. They also discovered the pre-
sence of the first harmonic of the low-frequency triplet at the remarkably high
frequency of 4.804299 mHz, a point discussed further in Section 7. Table 2 gives the
frequencies they derived.

An application of the generalized oblique pulsator model (Dziembowski and
Goode 1985, 1986) indicates that the internal magnetic field strength in HD 6532
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(Kurtz and Cropper 1987) is slightly less than that in HR 3831 (Kurtz and Shibahashi
1986). It is not known whether the same relationship will apply to the external mag-
netic field strengths. No magnetic measurements of HD 6532 (V =8.45) have been
made.

5. HD 60435

Matthews, Kurtz, and Wehlau (1986, 1987) obtained several hundred hours of
photometric observations of HD 60435 from both the Carnegie Southern Observatory
at Las Campanas in Chile and the South African Astronomical Observatory. They
found a very rich spectrum of frequencies with a basic spacing of 25.8 pHz which
they interpreted as a series of alternating even and odd [-modes much like that seen
in the sun.

However, the behaviour of the oscillations in HD 60435 appears to be differ-
ent from that in other rapidly oscillating Ap stars. The rotation period for HD 60435
is not known, but indications are that it is about 7-8 days. Frequencies are seen in
the amplitude spectra of this star which increase and decrease in amplitude over a
time-scale of about 7 days, but then they are not seen during the next 7-day time-
span; they may or may not be re-observed later.

On JD2445728 Matthews, Kurtz, and Wehlau observed HD 60435 continuously
for 13.5 hr. Four frequencies, 1.456 mHz, 1.431 mHz, 1.406 mHz and 1.382 mHz,
were clearly present with a 25 pHz spacing and with amplitudes less than 1.6 mmag.
At 1.367 mHz (25 pHz less than 1.382 mHz) on that night there is a local minimum
in the amplitude spectrum, and yet the highest amplitude ever observed for a single
frequency in a rapidly oscillating Ap star, 6.2 mmag, was at 1.37mHz in HD 60435
on JD2445383 (Kurtz 1984).

The dominant pulsation modes in HD 60435 have periods near 12 min, but
other pulsation modes have been observed with periods near 15 min, 6 min and even
4 min. Matthews, Kurtz, and Wehlau (1987) suggest that these modes may be tran-
sient with lifetimes of only a few days. Such rapid growth and decay is not observed
in other rapidly oscillating Ap stars and I continue to worry that the modes in HD
60435 may not be transient; the frequency spectrum may just be so complex that the
modes appear transient due to complex beating patterns. I have made similar argu-
ments concerning & Scuti stars elsewhere in these proceedings.

The counter-argument to this line of thought is, of course, that the many
hundreds of hours of observations of HD 60435 make the hypothesis of transient
modes believable, and that, in turn, makes the same hypothesis believable in & Scuti
stars. 1 would like to analyse a data set for HD 60435 similar to the one discussed
above for HR 1217 to test this hypothesis of transient modes further.
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6.Non-linearities

Four of the twelve known rapidly oscillating Ap stars, HD 6532, HD 6()43S,
HD 83368, and HD 101065, show the presence of the first harmonic of the princi-
pal frequency. In the case of HD 83368, as discussed in Section 3, the second har-
monic is also present; in HD 60435 a second harmonic was observed during one
week, but not again.

I originally argued (Kurtz 1982) that the first harmonic in HD 83368 is an in-
dependent / =2 pulsation mode which is excited by slight non-linearities in the princi-
pal [ =1 mode. Gabriel et al. (1985) rejected that interpretation based on the fact
that a (21,/ =2) mode does not naturally have exactly twice the frequency of an
(nl=1) mode. The original argument was, however, that the higher frequency mode
is driven into a 2:1 resonance with the lower frequency mode. The natural frequency
of the quadrupole mode is closest to that 2:1 resonance and hence that is the mode
most likely to be excited.

Osaki and Shibahashi (private communication) also rejected the resonant driv-
ing hypothesis; they felt that the high frequency triplet in HD 83368 is just the first
harmonic of the low frequency triplet and that it is expected that the first harmonic
should look like a quadrupole mode. Further support for this hypothesis came from
calculations by Shibahashi and Saio (1985) which showed that the rapidly oscillating
Ap stars have frequencies near to, or even above, the critical frequency calculated
from standard A-star models. :

The highest frequency observed in a rapidly oscillating Ap star is the first har-
monic in HD 6532 at 4.8 mHz. That frequency is very much greater than the criti-
cal frequency for even zero-age main sequence models and hence argues that it is
not due to an independently driven mode. The same argument holds for the second
harmonic in HD 83368.

However, even if these observed harmonics are non-linearities in the pulsation
and not independent pulsation modes, they must belong to a different spherical har-
monic than the principal mode and hence serve the same purpose diagnostically. In
HD 83368 the arguments are very strong that the principal oscillation is an [=1
mode. The arguments are good that the first harmonic is a quadrupole mode and
there are indications that the second harmonic is an /=3 mode. But, in any case,
the second harmonic does not lie at three times the fundamental frequency; it lies
at three times the fundamental frequency plus the rotation frequency; these harmon-
ics do not have a simple o, 20, 3w etc. simplicity.

Three of the four rapidly oscillating Ap stars which show the presence of har-
monics, HD 60435, HR 3831, and HD 101065, have principal frequencies near 1.4
mHz (P =12 min). HR 1217 has its principal oscillations near 2.7 mHz (P =6 min)
and it definitely shows no evidence of any harmonic frequencies with amplitudes
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above about 0.05 mmag. HD 134214 pulsates with only one frequency of 2.9 mHz
which has a relatively large amplitude of 3.2 mmag; there is no evidence for any
harmonic of that frequency. This makes it appear that there may be a high frequency
limit to the harmonics; the second harmonics in HD 60435 and HR 3831 have pe-
riods of 4 min and the first harmonic in HD 6532 has a period of 3.5 min.

What does the presence of harmonics mean in the rapidly oscillating Ap stars?
Are they independent pulsation modes? If so, in what way is the atmospheric struc-
ture of Ap stars altered from standard A-star models so that the critical frequencies
are greater than 4-5 mHz? Do these harmonics represent non-linearities in the pul-
sation? If so, why are they seen in rapidly oscillating Ap stars with amplitudes of a
few mmag and not in low-amplitude & Scuti stars with amplitudes of many hundredths
of a mag?

These harmonics should offer a great deal of information about the rapidly
oscillating Ap stars and hence deserve some thought.
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SPECTRAL LINE VARIATION DUE TO NON-RADIAL PULSATION*

W. W. Weiss
Intitute for Astronomy, Vienna, Austria
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H. Schneider
Universitdts Sternwarte Gottingen, G.F.R.

Abstract

In astroseismology a reliable identification of modes is one of the
fundamental problems where observations are of great importance. In the
case of non-radially pulsating CP2 stars we tried to contribute to mode
identification by applying high temporal and spectral resolution spectros-
copy.

1. Introduction

The identification of individual peaks in power spectra of pulsating CP2 stars
with radial or non-radial pulsation modes is important for the theoretical analysis
concerning stellar structure and excitation mechanism. High speed photometry usually
provides:

- pulsation frequencies

- pulsation amplitudes

In general, a solved frequency spectrum does not allow for an unambiguous
identification of pulsation modes. It is therefore desirable to increase the amount of
available information, for example by spectroscopy. Corresponding observations date
back to 1984 (Schneider et al. 1987) as well as theoretical discussions of spectral line
profile variations (Odell and Kreidl 1984; Baade and Weiss 1980).

To compute line profiles one has to take into account the superposition of

- velocity fields due to rotation

- velocity fields due to pulsation

- profile effects due to a magnetic field

- aspect effects

* Based in part on observations obtained at ESO, La Silla



120

Consequently, we have to deal with a large number of free parameters. In
addition, we have to assume a homogeneous distribution of the element in the stel-
lar atmosphere from which the spectral line under investigation originates.

In the best case, the contribution of some of these effects can be less than one
percent in intensity. The requirements for corresponding spectral observations are
therefore very high:

- Signal-to-Noise ratio of better than 1000

- Spectral resolution of better than 50 000

- Integration times of less than 1/10 of the pulsation period (i.e. 30 to about
90 seconds)

- Blend free spectral line

2.Observations

Currently, no equipment is available which would meet simultaneously all the
requirements and we had to compromise. Our observations were obtained with the
1.4m CAT at ESO feeding a coude echelle spectrograph. A Reticon was used as a
detector. We took many short exposures with each of the spectra having consequently
only a poor S/N-ratio. To extract the required information we had two possibilities:

- Provide a simultaneous photoelectric photometry and coadd individual spectra
with appropriate phases. Each of the mean spectra, averaged over a certain phase
interval, allows to discuss line profile variations on a level of less than 1 percent.

- Fit a simple line profile to the individual low S/N spectra and discuss the
temporal variation of the fit parameters. As was shown in Baade and Weiss (1986)
a fit of a Gaussian profile might be useful despite the fact that a symmetric function
is fitted to line profiles which in general will not be symmetric due to non -radial
pulsation. However, the advantage is that only two free parameters are required and
spectra of even poor S/N can be well fitted. These parameters allow to discuss
variations of the line-centroid and line width and thus to restrict possible mode iden-
tifications (Baade and Weiss 1986)

3.« Cir

a Cir (HD 128898) was observed by us at ESO-La Silla during the nights from
1984 October 27/28 to 30/31. This CP2 star seems to be particularly suited since it
seems to have a simple pulsation frequency spectrum (Schneider and Weiss 1983,
Weiss and Schneider 1984; Kurtz and Balona 1984) with the main frequency being
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6.8 hour™!. About 1500 individual spectra were accumulated and reduced at ESO-
Munich independently twice. Simultaneous 4-channel photometry was obtained with
the S0cm Danish telescope and the Stromgren photometer.

Typical Gaussian fits are presented in Figure 1 for the line of Cal (multiplet
18) at 6471.9 A. The spectrum at the top of this figure shows the mean spectrum
deduced from all spectra obained during this night. Below this line we present ten
mean spectra which are averaged for adjacent intervals of pulsation phases within a
width of 0.1 in phase.

In order to detect possible systematic profile variation more easily, we plot in
addition phase diagrams for bisectors which are computed for several intensity levels.
In Figure 2 we present the results for the three Cal lines which originate from mul-
tiplet 18. As intensity level we have chosen a value (0.905) at the steepest part of
the line profile, where effects due to pulsation will be more easily detectable.

As is evident from our Figure 1, a Gaussian fit is a reasonable approximation
to the line profiles. We computed such fits for several individual spectral lines and
for each of the individual, low S/N spectra. Line center and FWHM of the Gauss
fit was Fourier analysed and power spectra were computed. As an example we pre-
sent the results for the Cal line at 6471.9 A in Figure 3. No clear positive evidence
emerged for spectral line variations due to non-radial pulsation for all our reduction
procedures.

4.y Equ

vy Equ (HD 201601) was observed by us during the same period as was « Cir
and analyzed in a similar way. In addition, T. Kreidl and A. Odell were able to ob-
serve this star with the Coude Feed at the KPNO on the night of 1984 July 08/09
(Schneider et al. 1987).Basically, we have obtained the same results as for « Cir.

5.HR 1217

Recently, Mathews, Walker, and Wehlau (1987) presented clear evidence for
radial velocity variations in phase with pulsation for HR1217. They observed this star
at Mauna Kea Observatory simultaneously in Johnson B and spectroscopically with
the CFHT Coudé and Reticon equipment. Software modifications allowed them to
read out the Reticon detector at certain pulsation phases and coadd the readout im-
mediately in the computer. During the nights of 1986 Dec 15 and 16 observations
were successful. For the first night, radial velocity variations with a peak-to-peak
amplitude of about 100 m/s and in B of about 3 mmag are reported. The effects
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were larger during the second night: 300 m/s and 7 mmag. In contrary to our pro-
cedure, Mathews et al. have obtained their RV values by crosscorrelating the entire
spectra. Since several pulsation frequencies are present for this star (Kurtz 1988), the
mentioned B-amplitude is related to what results from interference and it cannot be
attributed to an individual pulsation mode.

6.Conclusion

Presently, different evidence are presented for spectrum variations due to non-
radial pulsation of CP2 stars. One drawback in applying spectroscopic techniques to
astroseismology of pulsating CP2 stars lies in the limits of the instrumentations cur-
rently available for observers. Access to larger telescopes definitely is needed even
for such bright stars, in particular if one aims for a higher spectral resolution. Such
efforts, however, seem to be just'bfied in order to make use of as much information
as possible which, on the other hand, is needed for an understanding of this group
of stars.

Currently, the authors are preparing a more detailed and complete discussion
of the observations at ESO for publication.
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NONLINEAR EFFECTS IN LOW AMPLITUDE VARIABLES

W. Dziembowski
Copernicus Astronomical Center, Warsaw, Poland

Abstract

Resonant mode coupling is likely to play the dominant role in lim-
iting the growth of unstable modes in main sequence stars and degenerate
dwarfs. Within the framework of the lowest order nonlinear theory, I dis-
cuss possible forms of a finite amplitude development of the instabilities.
Numerical results obtained for a ZAMS star model show that parametric
excitation of linearly damped gravity modes must occur when the ampli-
tude of linearly driven acoustic modes is of the order of 1-10 mmag. The
nonlinear interaction of those modes may then result in the amplitude
limitation at a similar level. Excitation of a higher frequency mode due
to the 2:1 resonance can also limit the amplitude growth, but this is a
much less important effect.

1.Introduction

Almost nine years ago at the workshop "Nonradial and Nonlinear Stellar Pul-
sation" I gave a review talk on the & Scuti variables (Dziembowski 1980), 1 expressed
then an idea that the difference in the behaviour between the dwarf and horizontal
branch pulsators is a result of differences in the mechanism of amplitude limitation,
which in the former case is the resonant mode coupling while in the latter one the
nonlinear saturation of the driving mechanism.

It was my hope that we might soon achieve a basic understanding of variabil-
ity in such stars like the & Scuti or ZZ Ceti by applying the formalism of resonant
mode interaction developed in different areas of physics to the problem of stellar
pulsations. However, we are still far from the goal. In my review — which may be
regarded as a progress report I still discuss possibilities and problems rather than
definite results.

The observed properties of main sequence and degenerate variables are re-
viewed in this volume by Kurtz (1988a, b) and by Winger (1988). Outside of their
discussions are g Cep and other upper main sequence stars. I will also not cover
problems concerning specifically this group, but I believe that some results concern-
ing amplitude limitation in the & Scuti type reviewed later in this paper may be rel-
evant to those objects as well.
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2. Problems posed by observations

Calculations reveal that in main sequence stars and, even to greater extent, in
white dwarfs pulsation instability usually appears in many modes of various radial
orders, n, and various herizontal degrees, /. The number of observed periodicities in
individual stars is much smaller and the deficit remains even after eliminating high-
[ modes (/>4) which suffer significant amplitude reduction due to the horizontal
averaging. The patterns of observed frequencies are often difficult to understand on
the ground of the linear theory. In & Sct and & Del, for instance, there are modes
observed at frequencies corresponding to the fundamental radial mode and the sec-
ond overtone, but there is nothing at the first overtone frequency. On the other
hand, calculated growth rates exhibit a rapid increase with the mode order up to the
fourth or fifth overtone.

~ This clearly demonstrates that in order to understand pulsational behaviour of
low amplitude variables we need a nonlinear theory perhaps even more than in the
case of high amplitude pulsating stars. The main question that such a theory must
answer concerns the mechanism of amplitude limitation. In Cepheid-type variables
the dominant role is played by the nonlinear saturation of the opacity mechanism.
Both observations and model calculations show that this is done in most cases by a
single pulsation mode even if there are more linearly unstable modes. It is clear that
in the low amplitude variables nonlinear effects must operate in a different way, but
I am less sure now than in 1979 that the resonant mode coupling is the only im-
portant effect in all these stars.

Of all types of variable stars in which we are interested here, 5 Scutis are best
understood. The vast majority of them have light amplitudes less than 0.1 mag. Those
few with larger amplitudes are either giants or Population II objects of unknown
evolutionary status. All these variables lie in the low luminosity extension of the
Cepheid instability strip. However, most of the stars in this region of the H-R dia-
gram appear to be nonvariable (Breger, 1979, 1982). Since the driving mechanism in
& Scuti stars is the same as in Cepheids we should expect that it may be saturated
at similar amplitudes. Nonlinear calculations made by Stellingwerf (1980) showed that
the amplitudes in the former case should be even larger. This excludes the possi-
bility that the saturation occurs due to the observed modes. I rejected also a possi-
bility that this is due to a large number of high-/ modes which cannot be seen in
light variations arguing that such modes should be seen in a form of line broaden-
ing. This hypothesis may be, however, worth reexamination because my argument re-
lied on the assumption of the general relevance of the Stellingwerf calculations.

There is no convincing evidence for amplitude and period variations in the &
Scuti stars. Those reported in the literature were never confirmed by subsequent in-
vestigations. The theory of resonant mode coupling, as we will see in Section 4, pre-
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dicts that a periodic amplitude and period modulation should happen fairly frequently.
Discovery of such changes would be very important for our understanding of non-
linear effects in these stars.

The group of rapidly oscillating Ap stars discovered by Kurtiz (1982) poses many
intriguing questions to the theory. The oscillations seen in these stars cannot be re-
garded as an analogue of the solar "five minute" modes in spite of period similarity
because the amplitudes are higher by three orders of magnitude and they are con-
stant over a few years. In such a situation it is most likely that the oscillations in
Ap stars represent linearly unstable modes with amplitudes limited by some very effi-
cient nonlinear effect. Works by Dolez and Gough (1982) and by Dolez, Gough, and
Vauclair (1987) demonstrated that high-order acoustic modes may be driven by opac-
ity mechanism in appropriate stellar models. There are, however, uncertainties con-
nected with the treatment of the magnetic field and element segregation effects in
these stars. s

In power spectra for some of the Ap stars the first harmonics of the main
frequencies have been found. This is surprising because the amplitudes of the princi-
pal modes are of the order of 1 mmag. Dziembowski and Goode (1986) suggested
that this may be a manifestation of the 2:1 near resonance between a linearly driven
mode and a higher order damped mode. They speculated that the resonant coupling
between such modes might be the needed amplitude limiting effect. 1 explore this
possibility further in Section 4. The results, however, are not very encouraging.

Oscillating white dwarfs of ZZ Ceti type were once considered as an excellent
playground for the mode coupling theory. Observers reported amplitude changes in
several objects of this type occurring on the time scale of days which was consistent
with the theoretical prediction (Dziembowski 1979). In particular in GD 385 such
changes appeared to be well documented (Fontaine et al. 1980; Vauclair and Bonazzola
1981). However, an analysis by Kepler (1984) of long-time data showed that all dras-
tic variations in the light curve result from the beating between modes of closely
spaced frequencies. At present, there is no evidence for genuine amplitude changes
in any oscillating white dwarfs.

This does not mean that the resonant coupling is unimportant in white dwarf
oscillations. The amplitudes in these stars are closer to those found among & Scuti-
type than Cepheid-type variables, but differences in the kind of modes and in the
driving mechanism means that the argument based on the size of amplitudes cannot
be convincing. For a similar reason it is difficult to decide whether harmonics seen
in the power spectra of many oscillating white dwarfs are abnormally enhanced which
could be taken as evidence in favour of the mode coupling. In these instances where
higher-order harmonics are seen the periodogram structure is very difficult to under-
stand within the framework of the oscillation theory. Drs. Winget and Kepler called
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my attention to three objects: GD154 (DAV), G191-16 (DAV), and PG131 + 489
(DBV) where such harmonics are seen. What is striking is that in all the cases the
amplitude decreases with the order by a constant factor equal to 1/3. Since this be-
haviour concerns the light amplitudes in objects differing significantly in physical
properties of their outer layers it seems inexplicable in terms of resonant coupling
and saturation effects.

3.Formalism for the treatment of resonant mode coupling

3.1 The amplitude equations

We start by considering a simple case when only two or three modes take part
in the interaction. We assume that the linear frequencies, o , of the modes satisfy
the relation

0a =0b +0oc + do .

where subscripts a, b, ¢ refer to the three modes, and &0 is a small frequency mis-
match. The case of two mode resonance corresponds to b=c. Equations describing
the evolution of the amplitudes of the involved modes may be written in the follow-
ing form

dAg/dt =paAq — sHApA exp(—idot) (1)
dAp/dt =ppAp + HAGA*exp(isot) g (2)

where g is the linear growth rate, s=1 and 1/2 for the three and two mode reso-
nance, respectively, and H denotes the coupling coefficient, which is an integral in-
volving products of eigenfunctions for the three modes. The amplitudes, A%, are
understood as complex factors multiplying linear eigenvectors, h’s, normalized in the
following way

J=20 [Ih%dM;=1 , 3)

Since modes b and ¢ appear in a symmetric way the equation for d4c/dt may be ob-
tained from equation (2) by interchange of b and c subscripts. !

It will be assumed in this paper that H may be calculated with the use of the
adiabatic eigenfunctions and therefore it is a real quantity. An explicit form of H
valid in such a case may be found in my earlier paper (Dziembowski 1982). A formal-
ism taking into account large departure from adiabaticity in the outer stellar layers,
as well as nonlinearities in the driving rate was developed by Buchler and Goupil
(1984). The equations retain then their form given by equations (1) and (2), but the
expressions for g and H have to be modified.
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Validity of our approximation regarding H depends on the relative contribution
of the outer layers to its value. This contribution is certainly smaller than that to
the value of g , and therefore it is reasonable to use fully nonadiabatic calculations
to evaluate p while still using adiabatic approximation for H. The nonlinear modifi-
cation of the driving rates is formally a higher order effect, but it may be impor-
tant at relatively Tow amplitudes due to strong nonlinearities in the opacity formula,
and it is indeed the dominant amplitude limiting effect in Cepheid-type variables.

Since H involves as a factor the integral of the three spherical harmonics, ¥/
the conditions for nonzero coupling may be written as follows

1)

ma=mp+me, B=h+01-2j, j=0,1,.. < [1/2+1 4)

where the subscripts 1, 2, 3 correspond in an arbitrary way to the different subscripts
a, b, c. No such rigorous requirement exists for the radial orders except for asymp-
totic cases.

3.2 Onset of the resonant interaction

Suppose that only one of the lower frequency modes is linearly unstable, say
gp > 0, and Ba<0. If the condition for the 2:1 resonance is fulfilled, oa=~2ob, then
the growth of the mode will occur at any finite |4p|. However, only if this ampli-
tude is sufficiently large is the growth of mode b affected by the presence of mode
a. The value Bpe given below in equation (6) may be used for a rough estimate of
this critical amplitude.

If mode a is the only linearly driven mode then an excitation of modes b and
¢ may occur as a result of a parametric instability. If one may ignore the growth of
mode a , then there is a simple criterion for the instability to occur which requires
that |4a| exceeds a certain critical value, Bac. The expression for Bgc is the same
as for Bge (see equation 5) except that ps should be set to zero in g.

These are two clearly different situations. Consider, for instance, an unstable
radial mode. Then, as follows from equation (4), the 2:1 resonant coupling may occur
only with another radial mode while the parametric coupling is possible with any
pair satifying the conditions lp =lc, mp=-mc. For all low degree modes the number
of candidates for the former coupling is small and, therefore, we expect that this
form of resonant interaction is less important. There are other important differences
between these two types of resonances and we will discuss them later.

If any two modes are linearly unstable then the resonant excitation of the third
one occurs in the same way as in the case of 2:1 resonance. We will see, however,
that in such a situation the resonant mode coupling does not lead to constant ampli-
tude oscillations.
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3.3 Constant amplitude solutions

If one substitutes in equations (1) and (2) 4 =B exp(ia) then the problem is
reduced to a real system of equations for B’s and the common phase ® =80t + aa—
ab—ac. When it is solved the individual phases may be found by means of a quadra-
ture. The system has the following constant amplitude solution

Ba=Bae=[pppc (1+qYHYY? (5)
Bb = Bpe = Bae(—Ba/Bb 5)1/2 s i (6)
ctan ®=q=580/(Ba +Bb +pBc) . (7

These equations describe the solution of our problem only if all B’s are real
and therefore if pp and pc are of the same sign and of the opposite sign than p,.

The constancy of B’s and @ implies that «’s vary linearly with time in such a
way that the observable frequencies satisfy exactly the resonance condition. This means
that the presence of modes excited due to a resonance manifests itself in a similar
form as a nonresonant nonlinear distortion of light and radial velocity curves.

3.4 Time-dependent solutions

A physical validity of the constant amplitude solutions is restricted by stability
requirements. In general, there are three parameters determining the stability domain
for the solutions described by equations (5) and (6). Here we choose wbh=-Bb/Ba,
pec =—Bc/Ba, and q. The results of stability analysis (Wersingzr et al. 1980; Dziembowski
1982) may be summarized as follows. If Bz <0 the constant amplitude solution is un-
stable unless b=c and pp<1/2. Thus, such a solution is valid only for the two-reso-
nance provided that the damping is sufficiently strong. If s>0, i.e. in the case of
the parametric resonance, the explicit form of the stability criterion is somewhat more
complicated and I will reproduce it here in the form valid if pp=~pc=n

w>(1+v3)2,  q2>(2uk2u + 1)/(2u2-2u-1). (8)

Like in the previous case the first condition requires that the damping rate
exceeds the driving rate in a certain way. The second condition requires that the
frequency mismatch is not too small. Qualitatively, the general criterion is similar.

Numerical experiments by Wersinger et al. (1980) and by Moskalik (1985) have
shown that in the stability domain the constant amplitude solutions are only asymp-
totic solutions of the problem, but outside this domain there is a large number of
possibilities. In some range outside the stability boundary the asymptotic solution has
the form of a simple periodic limit cycle, characterized by occurrence of single max-
imum ‘and minimum within each period. Moving away from the boundary the solu-
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tion goes through a series of bifurcations leading to an occurrence of increasing num-
ber of extrema, chaotic behaviour and finally to an unlimited amplitude growth.
Moskalik (1985) made a survey of simple periodic limit cycles arising in the
case uh=pc» 1 which is of special interest in application to the & Scuti stars. The
period is then of the order of 1/3 meaning 10>-10* years if a is the lowest radial
mode. Throughout most of the cycle an exponential growth of Aq occurs as described
by the linear equation. Moskalik (1988) studied also the stability of such solutions.

3.5 Resonant coupling involving larger number of modes

Up to this point we have assumed that only at most three modes take part in
the resonant interaction. We will see, however, in the following sections that an ex-
citation of new modes or mode pairs is unavoidable in some cases. Generalization
of the amplitude equations is easy, but very little is known about properties of their
solutions.

Any of the modes involved in the three-mode interaction may be subject to the
parametric instability leading to excitation of a new low-frequency pair. In particular
for given unstable mode a there are always many (b, c) pairs characterized by sim-
ilar values of 8o, H, and p. It is, thus, important to consider the possibility that many
such parallel pairs exist in the asymptotic solution. The amplitude equations in this
case are

dAg/dt =BgAg— SskHkApkAckexp(-idkot) (1a)
dApi/dt = BpkAbk+ HikAgAck*exp(iskat) | (2a)

where k=1, .., K, and K is the total number of (b, c¢) pairs included. It may be
shown that only for K=1 and 2 has the domain of constant amplitude solutions a
nonzero measure in the parameter space. The case of K=2 was studied by Moska-
lik (to be published) who found that stable solutions exist in a very restricted domain
and that the amplitude of mode a is then close to that obtained for K=1.

In order to describe interaction with modes generated in a cascade-type insta-
bility of modes b and ¢ we have to add new nonlinear terms in equation (2) or (2a)
and supplement the system with equations for amplitudes of the new modes. It is
likely, however, that a statistical approach analogous to the "random phase" approxi-
mation will be developed to treat this complicated problem.

There may also be a need to consider simultaneous interaction of a given un-
stable mode with few higher frequency damped modes. In particular, in the case of
high-order acoustic mode instability the 2:1 resonance condition may be fulfilled for
few such modes. Required modification of equations (1) and (2) consists in allow-
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ing for larger number of modes b. In this case there is no restriction on the num-
ber of such modes in the constant amplitude solutions.

4. Parametric instability in Delta Scuti oscillation

The modes observed in this type of variables are acoustic modes of low orders
and degrees. The linear stability analysis shows that such modes are indeed driven
by the opacity mechanism. Here we will discuss how the development of the insta-
bility may be affected by a parametric excitation of gravity-mode pairs. This discus-
sion is largely based on the already published results by Dziembowski and Krélikowska
(1985, DK).

Equation (5) may be used to evaluate the surface amplitude of a linearly un-
stable mode, a, corresponding to onset of the parametric instability to the growth of
modes b and c. This critical amplitude may be given in the following form

Qa = {BbBe [1+(50)(Bn +Bc)*VFa2} 2, 9)

where Q denotes the surface average value of the relative radius amplitude, and
Fa=H/\/Ja is calculated with the more standard normalization of the eigenvectors —
hr(R) =RY{". The corresponding light amplitude may be evaluated with the help of
linear nonadiabatic eigenfunction upon integrating over the disk. For nonradial modes,
however, this amplitude is aspect-dependent. In this formula and throughout the
whole paper we use /(4G <p>), where <p> is the mean stellar density, as the
frequency unit.

In the considered case modes b and ¢ must necessarily be gravity modes. Bear-
ing in mind the freedom in the choice of their /-degrees we must expect that for a
given mode a there are many (b, c) pairs leading to small values of s0. The critical
amplitude of mode a, Q , should be, thus, understood as the minimum value in the
whole set calculated for various pairs. Modes of relatively high degree and therefore
invisible in the light and radial velocity measurements are most likely to be excited.
There are more of them and they have denser frequency spectra. An upper limit for
the [-values that need to be considered is determined by the linear damping effect
which increases with the gravity mode degrees.

Properties of gravity modes are determined primarily by the behaviour of the
Brunt-Viisild frequency, N, in the star interior. In our units this frequency is given
by the following expression

NZ=m u / [np~(np + 1)/1] / 3x> | (10)

where m is the fractional mass, u=-d In(p/p) / d In (r) , np is the local polytropic
index, I' is the adiabatic exponent, and x is the fractional radius. Through most of
the outer envelopes of stellar models appropriate for the 8 Scuti stars we have m=1,
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I'=5/3, np=3.5, and u=1/(1-x). This implies that N reaches a minimum value of about
1.6 at x=0.75. This is a general property of the models. The behaviour of N below
the minimum changes, however, with the evolution. In ZAMS stars the inward in-
crease of N is terminated at x=0.3 . Higher mass concentration in evolved stars
implies that this termination occurs deeper and that the maximum values of N are
higher.

A gravity mode with frequency ¢ may be trapped only in the region where
N>g¢. The existence of the minimum in N causes that modes with frequencies above
this minimum value may be trapped in two separate cavities. This gives rise to two
sets of modes of vastly different properties — "the outer" and "the inner" g-modes.
The former ones are much stronger coupled (larger F-values) to the acoustic modes
but they are also much more nonadiabatic. In the model used by us (DK) the role
of these two types of modes turned out to be comparable.

Frequencies of the g-modes leading to small values of Q should satisfy the fol-
lowing approximate relations

Ibzlc, (sz()(‘-‘-(ra/z

The first of them follows from equation (4) if we assume lz>/p , the second from
considering the behaviour of F for high order g-modes. Since the dimensionless
frequencies of radial modes are essentially constant for all & Scuti star models, we
may now specify that the interaction with the two sets of gravity modes begins with
p4-mode (here we assume a more standard classification of radial modes implying
f=p1 rather than f=po used in DK).

In DK we gave results of the critical amplitude estimates for all unstable acous-
tic modes of /<2 in a 1.4 Me star on ZAMS. We did not calculate actual values of
Q because they would be too sensitive to the precise frequency values. Instead we
assumed some uncertainty in the frequencies and calculated probability distributions.
We found the following mean values of the critical light amplitudes for p; to ps
radial modes: 13.4, 6.3, 3.6, 4.9, and 2.6 mmag. For /=1 modes we got somewhat
larger and for /=2 modes somewhat smaller values than those.

For the first three modes the critical amplitudes are very close to the equi-
librium amplitudes because in this case |pp +pc|® pa . The interacting gravity modes
propagate in nearly the whole interior, but virtually all the dissipation arises in the
outermost layers. The most probable /-values are in the range 20-50. The constant
amplitude solutions are in more than 80 percent cases stable. We found these re-
sults very encouraging for the hypothesis that the parametric resonance controls the
nonlinear development of pulsation instability in these stars. The amplitudes were
perhaps somewhat too large, but in the subsequent investigation (Dziembowski et al.
1988; Krélikowska and Dziembowski 1988) it was shown that inclusion of the effects
of rotation leads to their further lowering. The theory explains in a natural way the
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frequent domination of the fundamental mode in spite of its very low excitation rate,
and it accounts for coincidence of pulsating and nonpulsating stars in the same domain
of the H-R diagram.

The situation is more complicated in the case of the higher order p-modes. The
coupling to the inner gravity modes virtually never leads to a stable constant ampli-
tude solution because these modes are very adiabatic and the first of the stability
conditions given in equation (8) is not fulfilled. Taking into account the coupling to
the outer g-modes we still find that the instability should occur in a predominant
number of cases. The other complicating factor is a likely excitation of new g-mode
pair as a result of the parametric instability of the three modes present in the orig-
inal interaction. There is also a problem with the validity of the adiabatic approxi-
mation in the treatment of the interaction with the outer g-modes.

All & Scuti stars with relatively large amplitude and therefore best studied are
evolved objects. It is, thus, very important to see how the resonant interaction changes
with the star’s evolution. The effect of an increase of the mass concentration on the
radial modes is small and consists in some increase of the driving rates. There is an
opposite effect on nonradial p-modes of low degree, because they may penetrate the
deep interior where they behave like gravity modes. The resonant g-modes except
for the outer ones are subject to large modification. Their energies become more
concentrated in the inner region, and this leads initially to a decrease in the damp-
ing rates. Shortly before the hydrogen exhaustion in the centre this tendency is
reversed because the dissipation in the interior begins to dominate.

A consequence of the changes in the energy distribution for various modes is
an increasing difference between the coupling coefficient calculated for radial and
nonradial acoustic modes. A stronger coupling of the latter with the linearly damped
gravity modes may help us in understanding why nonradial modes are not seen in
some more evolved objects. However, as found by Kré6likowska (personal communica-
tion) even radial modes have smaller critical amplitudes than in ZAMS star models,
because the effect of F decrease is overcompensated by a decrease of g and an in-
crease of the density of the g-mode frequency spectra. Thus, the theory postulating
an excitation of a single g-mode pair cannot account for the basic observational fact
that there is a strong tendency for pulsation amplitudes to increase with the evolu-
tion.

The calculations made by Krélikowska revealed, in fact, that the constant ampli-
tude solution in evolved star models is likely to be unstable according to the criteria
given in equation (8). Moreover, Moskalik (personal communication) found that an
excitation of new g-mode pairs is inevitable because the coupling between g-modes
is very much stronger than that involving one radial mode. Thus, we should expect
that each of the unstable modes is coupled to a large number of gravity modes.
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It should be stressed that even in the case of ZAMS stars where the constant
amplitude solutions are most often stable it is possible that actually the amplitudes
are limited as a result of a multimodal interaction. Therefore progress in the theory
of such interactions is essential for our understanding of the observed properties in
the whole type of & Scuti variables. Studies of a long-term amplitude behaviour should
provide important constraints for the theory.

5.The 2:1 resonance

The resonant coupling of an unstable mode to a higher order stable mode may
result in an amplitude limitation in various forms, but we consider here only the
most likely case of time-independent solutions. A convenient expression for the sur-
face amplitude, Q , of mode b may be obtatined from equations (5)-(7). Using the
same normalization as in the previous section we get

Q={-papp [1+(60)%/(2pb+pa)’VFb}"> | (11)

where Fp =H/\/(2Jp) . It is worth noting that if the damping rate is much larger than
the driving rate then Qp~+/pp in the present case while in the case of parametric
resonance the amplitude of the unstable mode is independent of the driving rate.

In Table 1 we give values of the parameters appearing in equation (11) for the
resonant pairs of acoustic modes in the same stellar model as used in DK. We give
also there the period of the lower frequency mode, Pp, radial orders, n, and factor
f converting Q-amplitude into the light amplitude. In the list all resonant pairs in
the vicinity of 8¢=0 involving /p=0 and 1 modes are included.

Table 1. The 2:1 resonances between p-modes in a ZAMS 5 Scuti star model.

Pb (uin) S 1'b 1a o, 0y &0 F ﬁa Ba fb
41.0 2,58 0 0 2 5 -0.062 0.02 2.0E-7 -2.1E-5 13
33.4 3l 0 0 3 8 027 10219 1.4E-6 -6.4E-4 15
14.8 7.14 0 0 9 19 -0.045 8.8 -1,8E-3 -3.7E-2 54
13.6 1 s82 0 O SLO" 21 0.042 16.3 -3.6E-3 -4 ,5E-2 63
15.6 6.79 1 0 8 18 -0.070 14.2 -1.1E-3 -3.3E-2 61
14.2 7.46 1 0 9 20 0% 0374 234 -2.6E-3 -4.1E-2 72
142 7.46 1 2 9 19 -0.051 25.0 -2.6E-3 -4.1E-2 72
13.0 8.14 1 Z" "1 =Z1 0.034 32.1 -4,7E-3 -4.,7E-2 81

The resonance between p2 and ps radial modes was of interest as a possible
explanation of the conspicuous absence of the former one in two & Scuti-type stars.
Using the data from Table 1 in equation (11) we find 4 mmag for the light ampli-
tude of this mode. Having in mind the fact that the model is not really appropriate
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for these two objects we should allow for some parameter variations. The most im-
portant is uncertainty in the frequency mismatch. Assuming, for instance, an exact
resonance we get 3 mmag for the amplitude. This means a significant amplitude limi-
tation, but requires a very unlikely coincidence. The primary reason for this disap-
pointing result is the low value of F in this case. The resonance between p3 and pg
modes does not lead to interesting values for the amplitude, either.

In our model all higher order modes are damped and therefore we cannot apply
equation (11) to evaluate the amplitudes. It is, however, of interest to ask what
should be the order of magnitude of the driving rates to imply the light amplitudes
of the order of 1 mmag as observed in the rapidly oscillating Ap stars. The answer
is that they should be by a factor of 10% 10 107 smaller than the listed damping
rates. Models proposed for the Ap stars are somewhat evolved and more massive
than our model, but it cannot be expected that modifications in J-values and other
parameters may reverse this conclusion. Thus, also in the present case we require
an unlikely event which is now an essentially exact compensation of driving and
damping effects. Moreover, if this is indeed the case we should expect that the non-
linear saturation of the driving mechanism is important at the observed amplitudes.

6.Conclusions

We are far from understanding the observed properties of the low amplitude
variables. There are still considerable uncertainties on the level of the linear non-
adiabatic theory. In certain types of stars we do not even know the driving mecha-
nism. In those cases like & Scuti or ZZ Ceti types where we think we understand
the instability mechanism the question which of the nonlinear effects controls the
amplitude limitation must be regarded as open. Except of the work by Stellingwerf
(1980) concerning selected & Scuti star models we do not have nonlinear calculations
which would allow us to reject conclusively a collective saturation of the driving
mechanism as the cause of the amplitude limitation.

The hypothesis that the resonant mode coupling is the dominant nonlinear ef-
fect has several attractive features. We have seen that the parametric excitation of
gravity modes in § Scuti stars occurs at the amplitudes of the unstable modes less
than observed and, in most cases, less than the detection limit. The calculated ampli-
tudes are sensitive to the model properties but they are not directly related to the
linear growth rates; this feature appears consistent with observations. Furthermore,
the importance of the g-modes is suggested by the observational evidence that the
evolutionary status rather than the effective temperature determines pulsational prop-
erties in the & Scuti variables, because these modes are primarily affected by the
evolution.
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There are also problems with this hypothesis. Consequences of the resonant
mode coupling are easy to predict only if an unstable acoustic mode is coupled to
a single gravity-mode pair, but this remains as a possibility only in the case of the
lowest order p-modes in unevolved stars. In the remaining cases an excitation of a
large number of the pairs must occur.We know that constant amplitude solutions do
not exist in such cases, but there is no theory to handle the complicated time-de-
pendent problem. Moreover, it is not clear how the apparent constancy of amplitude
may then be explained.

We have seen that the 2:1 resonance cannot account for a systematic ampli-
tude limitation, although it remains a viable explanation of an abnormal enhance-
ment of the harmonics in power spectra. The problem why all known Ap stars have
so small amplitude must, thus, be approached in a different way. The possibility
that the parametric resonance is also important in this case deserves an investiga-
tion.
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LIMITING AMPLITUDE EFFECT OF THE PARAMETRIC RESONANCE IN
ROTATING MAIN SEQUENCE STARS

M. Krélikowska and W. Dziembowski
Copernicus Astronomical Center, Warsaw, Poland

Abstract

We give limits for amplitudes of pulsations imposed by parametric
resonance in rotating 8 Scuti type stars. Calculations were performed for
M=1.4 M@ and a chemical composition X=0.7, Z=0.02 . We consider
the three lowest radial excited acoustic modes. It is shown that rotation
above ~20 km/s significantly reduces pulsational amplitudes.

1.Introduction

It is very difficult to separate influence of rotation, metallicity and evolution on
pulsational behaviour of & Scuti type stars. It seems, however, that there exist two
known and distinctly visible observational facts which show that pulsational ampli-
tude decreases due to rotation.

First, Breger (1969, 1979) showed, that in luminosity classes III and IV ro-
tational velocities are significantly lower for pulsating stars than for the constant ones.
However, among main sequence stars this tendency is reversed. This is because there
are many slowly rotating (so called Am) stars which do not pulsate as a result of
gravitational helium settling. After removal of metallic stars from the sample the ro-
tational velocities of variables become slightly smaller than nonvariable.

Second (Breger 1982; McNamara 1985), the & Scuti stars with rotational veloci-
ties Vrot< 40 km/s have much larger amplitudes than variables with higher rotation.

The aim of this paper is to show that the parametric resonance in rotating stars
explains in a natural way both observational relationships.

2. Probability of parametric resonance in rotating stars

In this case parametric resonance results from interaction of an excited acous-
tic mode with two damped gravity modes.

We have generalized the formalism for the treatment of the parametric reso-
nance in nonradially oscillating stars to include effect of rotation (Dziembowski,
Krélikowska and Kosovitchev 1988).
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Using as a basis the linear displacement eigenfunctions for the three involved
modes we obtain the amplitude equation in the same form as in the case of no ro-
tation (Dziembowski and Krélikowska 1985). A slow uniform rotation has a negligible
effect on the coupling coefficient, v, but this is not generally true if the rotation is
nonuniform. In our investigation we allowed for variation of the angular velocity 0
with the radius r, but we restricted the form of this dependence which made possible
to ignore modification of the coupling coefficient.

Thus, we assume that the rotation is only weakly nonuniform in the sense that:

m AQ(r)/a <« 1 (1)

where m is the azimuthal number, G=w+mQo, Qo is the average value of @, and
AQ(r) describes deviations from uniform rotation. Furthermore, if we assume that in
the propagation zone the Brunt-Viisild frequency is much larger than & we obtain

iz = ) 2
Oplm = Wplo + M° <AQ>T/ Wy 0

, )

where @40 denotes eigenfrequency without rotation, subscripts n, I, m identify the
mode.

In the case of uniform rotation it is easy to show that
- P 2 2~ 2 3
Onlm = Onlo + [MQ - m Q0] /| ) (3)

When we neglect the temporal variation of the amplitude of acoustic excited mode
("1") the criterion for the parametric excitation of two gravity damped modes ("2"
and "3") may be written in the form

Q1 > 2 [ Y293 (1+aw/(V24Y3)) |5y, “)

where Q1 is understood as mean value of AR/R in (4"G<p>)1/2 units, and v is the

normalized coupling coefficient, Y2 Y3 are the linear driving rates (for damped modes
are negative), Aw=W0; Wpg" mco‘2m2H is the frequency mismatch,

=
Il

(@%fwa) / P if @ = const,,

(0%w,) <a0?>/< 0> ifo = o@r) .

=
I
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In order to determine the critical amplitude of acoustic excited mode we have -
to consider all the mode pairs ("2" and "3") satisfying the following relation

3=lh+1-2k , where k < I

which is implied by the v=0 condition. For selected numbers /2, /3 we have few mode
pairs identified by their radial numbers n which contribute to the resonance prob-
ability.

The most important effect of rotation lies in frequency splitting of modes differ-
ing by azimuthal number m. Larger number of pairs as compared to the non-rotat-
ing case satisfying m3=-m2+mj relation (m2=-I, ..., 0, ..., [2) facilitates more precise
frequency fitting.

In the following we consider only radial acoustic mode (v is m-independent)
and assume Y2=Y3 . From relation (4) we can find that for given pair the instabil-
ity occurs for the mode amplitude "1" larger than Q. After some calculation one can
show that

) if NS g,
pLi(Q) = (+1Wene — (W2 = BY(dedn®) if ks A = @1, (5
- (=P o if A > -1y,

A

v

where pij(Q) is the summed over m probability of resonance at amplitude Q for
given /, subscript j describes different combination of radial numbers n for given [,
A=(Q2vf — 4y L2)1/2 and 8p,W=Wp4140Wnso . To calculate the total probability of
resonance we replace the sum over / by an integral. Since p;j(Q) <« 1 we can write

P(Q) = 1 -exp[ -1 5 p1j(Q)dl | . (6)

Equation (6) can be written in explicit form.

We give numerical results corresponding to the same ZAMS star model as in
Dziembowski and Krélikowska (1985). This model is characterized by M =1.4Mg,
X=0.7,Z=0.02 .

In Figures 1 and 2 we show P(Q) for the fundamental radial mode in the case
of uniform and nonuniform rotation, respectively. Qualitatively thé behaviour is the
same for the first and the second overtones. The lowest curves in both figures are
indistinguishable from the curves in the non-rotating case. One can see, an appreci-
able effect of rotation begins at viot = 20 kmys.
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Fig. 1. Probability that the Baramelric instability of the fundamental radial mode
occurs at the amplitude AR/R less than Q for various equatorial velocities of
rotation, vrot = QR. The model represents M = 1.4Mg star on Population 1 ZAMS.
U(r)liform rotation is assumed. The vertical line corresponds to Ay amplitude of
0.01 mag.

The r-dependence in Q(r) is important if n exceeds 0.1 . We argue that it is
plausible that the nonlinear interaction between a linearly unstable acoustic mode
and two linearly damped gravity modes leads to the constant amplitude pulsation.
The acoustic mode amplitude is then close to the critical value. Using the results of
our calculation we may convert Q-amplitude to the light amplitude, 4y and evaluate-
probability that the acoustic mode amplitude is larger than an observable value.
Figures 3 and 4 show results of such calculation for the fundamental and the first
overtone, respectively.
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Fig. 2. Same as Figure 1 for nonuniform rotation, where n = (< An(r)2>) /<,
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Fig. 3. Probability that the fundamental mode amplitude is larger than 0.01 mag
as function of the equatorial velocity for uniform and nonuniform rotation.
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Fig. 4. Same as Figure 3 for the first radial mode.
3.Conclusions

By removing degeneracy of the gravity mode frequencies the rotation consider-
ably increases probability of close resonance and consequently the chances that the
parametric resonance occurs at low amplitude of a linearly driven acoustic mode.
Our numerical results obtained for an unevolved 5 Scuti star model show that the
effect begins to be visible at a modest equatorial velocity vror =~ 20 km/s. It increases
rapidly with vro and at the value of 60 km/s the probability that the instability oc-
curs before the fundamental mode may reach detection level is reduced to 0.1 from
057 at Vigr=0.

It would be premature, however, to conclude that this effect. explains the ab-
sence of rapidly rotating objects among large amplitude variables. This is because (i)
our results are directly applicable only to luminosity class V objects, (ii) the hypothe-
sis that the amplitude limitation occurs due to a steady three-mode interaction is
still uncertain.




147

References

Breger, M. 1969, Ap. J. Suppl. 19, 79.

Breger, M. 1979, Publ. A.S.P., 91, §.

Breger, M. 1982, Publ. A.S.P., 94, 845.

Dziembowski, W., and Krélikowska, M. 1985, Acta Astr. 35, S. _
Dziembowski, W., Krélikowska, M., and Kosovitchev, A. 1988, Acta Astr., submitted.
McNamara, D.H. 1985, Publ. A.S.P., 97, 715.






STABILITY OF THE THREE-MODE LIMIT CYCLES IN THE MULTIMODE
PARAMETRIC RESONANCE CASE

P. Moskalik
Copernicus Astronomical Center, Warsaw, Poland

Abstract

The stability of a three-mode limit cycle against the decay into a pair
of damped modes is studied. It is shown, that stability criteria for the limit
cycle and for a constant amplitude solution are quite similar, although a
few noticeable differences among them are also present.

Resonant mode coupling is very important in stellar pulsations, especially in
dwarf-type variables. As it was argued by Dziembowski (1980), it is probably the main
amplitude limiting effect in such stars. This suggestion was later confirmed by detailed
numerical calculations carried out for a & Scuti star model by Dziembowski and
Krolikéwska (1985). They have shown, that each linearly unstable p-mode with a
frequency of w, can excite easily a certain pair of damped gravitational modes (re-
ferred as 1 and 1°) satisfying a near-resonance condition wo=®;+@p, This effect is
called a parametric resonance instability and, at least for f-, pi- and p2 - modes in
ZAMS variables, it leads to the limitation of the visual pulsation amplitudes at a
level as low as it is actually observed. The limitation usually occurs in the form of
oscillations with a constant amplitude (about 80% of all cases), but more compli-
cated forms are also possible. The most probable one in the latter case is a limit
cycle behaviour corresponding to slow, periodic amplitude modulation (Moskalik 1985).

All these solutions were obtained under the assumption that a given p-mode
interacts with only one g-mode pair. This assumption, however, does not have to be
true in general, because there are many g-mode pairs coupled to the same acoustic
mode and all of them can in principle interact with the p-mode simultaneously. The
aim of a present work was to study the stability of a three-mode limit cycle in such
complicated situation.

The limit cycles I want to discuss were found numerically as asymptotic solu-
tions of the familiar resonant amplitude equations

dQq

ac - 0% = CoQyQp exp (-i8;t) s (la)
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d
% =-YvQ + ClQoQt’ exp(i8;t) s (1b)
d
d_tqy = - Y@ + CrrQoQf exp(i61t) o

where Y;>0 are linear stability coefficients and &1 =wy-w;-wp, These solutions may
be written in the form

Qj(t) = zj(t) exp(i(‘Pj(t)+th)) = Bj(t) exp(injt) 3 (2)

where functions Bj(t) are strictly periodic and constants »j represent small nonlinear
frequency shifts. All calculations reported here were done in the case Y7=Y7» Yo,
which case is the most important one in & Scuti-type stars. Nonadiabatic effects in
coupling coefficients were neglected, what was equivalent to the assumption, that Cj
were purely real and positive (Dziembowski 1982). For the purpose of the present
work only the simplest limit cycles possible were considered, namely the cycles having
one minimum and one maximum in each amplitude during the modulation period.
The detailed discussion of these solutions and their properties was given by Moskalik
(1985).

The problem of the limit cycle stability against the decay of mode 0 to another
g- mode pair (with parameters Y2, Y2’ and 62 =wo—wp-wy’) is equivalent to the prob-
lem of the excitation of this pair by p- mode oscillations with periodically variable
amplitude and phase. Such excitation is described by differential equations similar to
equations (1b) and (1c), but now Qp is not an independent variable, but is given by
equation (2). Substituting into these equations Qj=Sjexp(i(62+no)t/2)
we obtain a linear system with periodically variable coefficients for two unknown
functions S2 and S2*

:—32 = —(Yg + 1(6g+ Uy)/2)Sy + CoBy(t)SH . (3a)
dSEv * *
= - (Y = 1(62+my)/2)S + CpBg(t)Sy ! (3b)

According to the Floquet theorem its general solution can be written as

%2 @)
S; =g i) exp(mlt) + vy (t) exp(mzt) 5
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where m1, m are characteristic exponents of the system and v;(t), va(t) are periodic
functions of time. Thus, the limit cycle Qo(t) is stable if the real parts of both m;
and m2 are negative and is unstable if at least one of them is positive.

In practice, characteristic exponents of equations (3) can be found only numeri-
cally with the standard method described for example by Moulton (1958). Typical re-
sults of this procedure in the case Y2=Y2, are shown in Figure 1. The solid line

Y/ Yo ;
38 ol

]

26 =

]

18 :
UNSTABLE .

A T e

28 4 68
0

o/ Yo

Fig. 1. The stability of the three-mode limit cycle with parameters Y7 =Yz = 10Y,,
6/ =15Y, against the excitation of a second g-mode pair for the relative cou-
pling strength coefficient A =+/(C2C2/C1Cr)=2. The dashed line represents the
stability criterion valid in the case of a constant amplitude solution, calculated
for given Y7 and &; from equation (4.5) of Dziembowski (1982).

represents the stability criterion obtained for the limit cycle with parameters
Y1=Ypr=10Y%, ©67=15Yo and for relative coupling strength coefficient
A =(C2Cz'/C1C1')U2=2. The considered cycle is unstable to excitation of g-mode pairs
with parameters (Yy,89) lying below this line, while it is stable to excitation of pairs
with (¥2,62 lying above it. For comparison, the criterion valid in the case of a con-
stant amplitude solution is also shown (dashed line). As one can see these criteria
are different in two important respects. First, for constant amplitude solution a cer-
tain maximum value of |62| always exists, above which all g-mode pairs are stable,
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independently of their damping rates Y2. No such limit for the frequency mismatch
&2 can be found in the case of a limit cycle. Second, the dashed line is completely
featureless, whereas characteristic narrow dips are present in the solid line. In other
words, in the case of a limit cycle there are some specific values of &, for which ex-
tremely low damping rates Y are sufficient to stabilize the g-mode pair. In fact, ad-
ditional calculations with higher resolution in & indicate, that the very narrow, flat
bottoms of all the dips are located exactly at Y2=0.

In spite of the differences mentioned above we should ndtice, however, that
both instability regions, defined by solid line and dashed line respectively, are lo-
cated at nearly the same position on the Y>-82 plane. As we can see, both these re-
gions are also quite comparable in size. This result means, that in the multimode
parametric resonance case the general stability properties of the three-mode limit cy-
cles are nearly the same as the stability properties of the constant amplitude solu-
tions.
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THE EXCITATION OF SOLAR OSCILLATIONS -
OBSERVATIONAL RESULTS AND THEORETICAL SPECULATIONS

J. Christensen-Dalsgaard
Astronomisk Institut, Aarhus Universitet,
Aarhus C, Denmark

Abstrac?

Two different possible mechanisms have been proposed as responsible
for the solar five minute oscillations: self-excitation and stochastic excita-
tion by the turbulent convection. In the former case, a mechanism is also
required to limit the growth of the oscillations, hence determining their
final amplitudes. In principle it should be possible to distinguish between
these possibilities from observations of the observed amplitudes of solar
oscillation, and their variation with time. Additional information about the
linear damping of the modes may be obtained from the observed line
widths, as well as from observations of the phase variation with altitude
in the solar atmosphere.

1.Introduction

The Sun is an extreme multi-mode oscillator. Currently of the order of several
thousand modes have been identified (e.g. Duvall et al. 1988; Libbrecht and Kaufman
1988; Pallé et al. 1987a). Future observations, from the Global Oscillation Network
Group and from the SOHO spacecraft (e.g. Harvey, Kennedy, and Leibacher 1987,
Noves 1987) should lead to the identification of essentially all modes in the five-
minute region with degrees [ up to 100-200, that is of the order of 10° modes.*
Thus it is not unreasonable to predict that in the next decade more than 50 per
cent of the modes of oscillation identified in all stars will belong to the Sun.

* At higher degree the phase propagation time around the Sun for the mode probably
exceeds the mode life time, and so the oscillation loses its global modal structure in 6 and
&. Here the individual modes merge intoridges, each corresponding toagivenradial order
n, as a function of the radial wave number kn which must now be regarded asa continuous
variable.
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The principal interest of the solar oscillations lies in their use for helioseismic
studies of the solar interior. This requires accurate determination, and careful analy-
sis, of the oscillation frequencies, whereas the causes of the oscillations are, in a first
approximation, largely irrelevant. Nevertheless, the mechanisms responsible for main-
taining and determining the amplitudes of the oscillations are of considerable inter-
est and importance. More specifically, the following aspects may be mentioned:

— Interpretation of frequencies. The excitation mechanisms may have effects on
the oscillation frequencies which, given the high precision attainable in the obser-
vational determination of the frequencies, need to be taken into account when they
are used for helioseismology.

— The physics of multimode pulsation. Because of the large number of modes
present, the Sun provides a laboratory for the study of multimode pulsation, includ-
ing possibly interaction between the modes, or between the oscillations and the tur-
bulent convection.

— Diagnostics of convection. It seems likely that convection plays a major role
in determining the properties of solar oscillations. If the physics of the interaction
between convection and pulsation were to be understood, it might be possible to use
the observed mode amplitudes to get information about the properties of convection
beneath the solar photosphere.

— Prediction of solar-like oscillations in other stars. Given an understanding of
the causes of solar oscillations, it may be possible to predict the amplitudes of sim-
ilar oscillations in other stars. This might aid the detection and interpretation of such
oscillations.

Here I only consider modes in the five-minute region. Observation of oscilla-
tions has also been reported at longer periods, corresponding to g modes of solar
models. However, their identification is as yet tentative, and no definite assignment
of modes to the observed oscillation has been possible. Hence speculation about
their causes is somewhat premature.

The paper is only concerned with the excitation of solar oscillations, and the
observable properties that may be relevant to understanding it. More detailed de-
scriptions of solar oscillations and their use for helioseismology may be found, e.g,
in Deubner and Gough (1984) and Christensen-Dalsgaard, Gough and Toomre (1985a).
A review of the excitation of solar and stellar oscillations was given by Chitre (1987),
whereas Frandsen (1987) reviewed the diagnostic potentials of solar oscillations for
the study of the solar atmosphere. :
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2. Observation of solar oscillations

2.1 The modal description

For a single, linearly damped or excited mode of oscillation, the velocity field
can be written as

Vizm = ViemRe [Er(r)Y!E‘(G,w)e"”"l]a, + tangential part, 2.1)

where r is the distance to the centre, 8 and ¢ are co-latitude and longitude, and ¢
is time; ar is a unit vector in the r-direction. ¥/ is a spherical harmonic of degree
! and azimuthal order m, and &(r) is the radial eigenfunction. The tangential part
may be neglected for the five-minute modes, except at high degree. The complex
frequency wc is written as wc=w+in, where w and q are real.

For a given observation scheme, the observed velocity may be written as

V(t) = Acos(wt + 8)e™, (2.2)

where the amplitude A is related to Vaim by the spatial filtering applied to the sur-
face velocity (e.g. Dziembowski 1977, Christensen-Dalsgaard and Gough 1982, Christensen-
Dalsgaard 1984), and 5 is the phase at t=0. Thus w determines the observed frequency,
often specified in terms of the cyclic frequency v=w/2w, and = is the growth rate.
Fourier transform of a time series lasting from t=0 to t=T gives

Sy g 8 3 ek iages My | Gagukt g e . } 23
V) = fvite! ‘dt-zuw,_w)+n{e“ at 1}, (2.3)

neglecting (for »’> 0) a similar term in o’+w. Hence the power spectrum is

T
eMsin?[(w’ - w)=]1 + 4(e™ - 1)?
e e 2 . 2.4)
P(w’) = |V(w")] (o' -~ wp & 2

The behaviour of P(w’) depends on the relative magnitude of the mode life
time |-q|'1 and the observing time T. To be definite, we assume a damped oscilla-
tion, i.e. m<0. For |7T] « 1,



156

P(w’) = A?T?sinc? [-(E’ZL)T] 2.5)

where sinc x = (sin x)/x ; here the full width at half maximum (FWHM) in o of
the observed peak is given by 5.77 T, For [nT| > 1, on the other hand, the line
profile is Lorentzian,

ATEIT LTI L (2.6)

(' - w)? + "72’

with a FWHM of 2. The transition between these two cases is illustrated in Figure
1. Notice that when |nT|=3 , the damping makes a substantial contribution to the
line width, and hence the damping rate may be measured from observed line pro-
files. For |nT| >S5 the line profile is essentially purely Lorentzian.

These results only strictly apply to an isolated oscillator that is neither forced
nor interacts with other modes. However, as discussed in Section 3.3 below, a sim-
ilar behaviour is obtained for damped modes that are excited stochastically by a forc-
ing function whose spectrum is nearly white. Thus in this case, also, the measured
line widths can be used to estimate the linear damping rates.

In practice, the observed spectral peaks are unlikely to display a smooth be-
haviour. Discrete sampling, effects of noise, and mode beating introduce fine struc-
ture, with a typical frequency spacing of T, with an envelope given approximately
by equation (2.4) (Scherrer 1984; Isaak 1986). Additional fluctuations may arise from
the possibly stochastic nature of the excitation. The fluctuations introduce a scatter,
of order |n| in the frequency determination. By averaging separate spectra, each
based on observations of sufficient duration, the fine structure can be suppressed; in
this way it should be possible to determine the frequency with an accuracy consider-
ably exceeding the natural width of the spectral peak.
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Fig. 1. Idealized power spectrum (see equation (2.4)) illustrating the combined
effects of damping and finite observing time. The abscissa is frequency separa-
tion, in units of 1/T, where T is the duration of the time series. The ordinate
has been normalized to a maximum value of 1. Curves are shown for different
values of |nT|, indicated in the Figure, where = is the damping rate.

2.2 The oscillation frequencies

Evidence may be sought in the observed oscillation frequencies for non-linear
effects (such as phase-locking caused by resonant mode interaction; see Dziembowski,
1988), or for "chaos" caused by deformation of the Sun (Perdang, 1988). This might
lead to irregular variations in the frequencies, as functions of / and n. To search
for such variations, one may consider the deviations from smooth fits to the frequen-
cies, or from computed frequencies which in general depend smoothly on / and n.
It must be born in mind, however, that the finite observing time and mode life time,
as well as noise, may cause purely observational scatter in the frequencies. Addi-
tional complications may arise from beating between insufficiently resolved, closely
spaced modes (Christensen-Dalsgaard and Gough 1982).
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So far, comparisons between observed and computed frequencies (e.g. Christen-
sen-Dalsgaard and Gough 1984) have not shown significant frequency variations of
this nature. This should be seen in contrast to the very substantial deviations, com-
pared with the inherent accuracy of the observations, between observations and theory.
Thus T conclude that non-linear or chaotic effects on the frequencies are currently
not of major concern. It may well be, however, that future observations resulting in
long unbroken time series, will necessitate a reconsideration of this question.

2.3 Mode lifetimes

It was pointed out by Grec, Fossat and Pomerantz (1983) that the width of the
peaks in the power spectra increases with increasing frequency. This tendency is also
visible in the observed spectrum shown in Figure 2. More quantitative measures of
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Fig. 2. Power spectrum of solar oscillations, from Doppler observations in light
integrated over the disk of the Sun. The ordinate is normalized to show veloc-
ity power per frequency bin. (See Claverie et al. 1984).

line widths were obtained by Isaak (1986) from two-station observations over 88 days,
and by Libbrecht and Zirin (1986) and Libbrecht (private communication; see also
Christensen-Dalsgaard, Gough and Libbrecht 1988), who fitted Lorentzian profiles to
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the peaks in power spectra. The resulting line widths are shown in Figure 7 below.
There is a very substantial increase in the width with frequency; observationally this
means that low-frequency modes are advantageous for very precise frequency deter-
mination, or for separation of closely-spaced peaks caused by, e.g., rotational split-
ting. The theoretical interpretation of the line width measurements is discussed in
Section 3.

2.4 Mode amplitudes

As is evident from Figure 2, the amplitude of the five-minute oscillations de-
pends strongly on frequency, with a pronounced maximum at »=3000 wHz and very
small values for frequencies below 2000 and above 4000 nHz. While the spectrum
in Figure 2 only contains low-degree modes, the same general behaviour is found at
all | (Grec and Fossat 1977; Libbrecht et al. 1986). Figure 3, from Libbrecht et al.,
shows velocity power averaged over several ranges in /, as a function of frequency.
It is evident that the frequency dependence of power is virtually independent of /,
even at high degree. Libbrecht et al. also showed that the average over v of the
energy per mode (i.e. individual set (n, , m)) does not depend significantly on /, at
least for I < 200 ; a similar, though less well-established, result was obtained by
Christensen-Dalsgaard and Gough (1982) on the basis of observations by Grec and
Fossat (1977). Finally Libbrecht et al. showed that, when averaged over frequency and
degree, the energy of modes with 5 < [ < 20 is independent of m. Thus the avail-
able evidence indicates that the average mode energy is a function of frequency
alone.

Figure 2 also shows that there are substantial variations in the amplitudes be-
tween adjacent modes. Part of this variation can be attributed to the variation in the
observing sensitivity with /, or to mode beating; however there is strong evidence
that the amplitude variations, which are found also at higher degrees, are significant.
The distribution of mode amplitudes must carry information about the mechanisms
determining them. Similar information may be sought from temporal variation of the
mode amplitudes; the currently available information (Grec et al. 1983; Gelly 1987,
Pallé et al. 1987b), however, is not conclusive, largely because of the difficulties of
mode beating.

2.5 Phase relations

For adiabatic oscillations the maximum temperature perturbation occurs at max-
imum compression. Hence the velocity and temperature perturbation are 90° out of
phase. Non-adiabatic effects change this phase relation. They also introduce changes
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Fig. 3. Velocity power as a function of frequency, from Libbrecht et al. (1986).
The data points show the power averaged over [ for four different ranges in /,
as indicated. The points for the lowest range in / are shown on the proper
scale, the others have been shifted. The curves are discussed in the text.

in phase with height in the solar atmosphere. Thus by measuring phase differences
between different types of observations, information can be obtained about the
processes in the solar atmosphere that contribute to the damping or driving of the
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oscillations. There now exist fairly extensive observations of phase relations between
intensity and velocity in spectral lines (e.g. Lites and Chipman 1979; Lites, Chipman
and White 1982; Staiger et al. 1984; Staiger 1987; Stebbins and Goode 1987), and a
few measurements of phase relations in the continuum (Frohlich and van der Raay
1984). The interpretation of such data is complicated by the non-local nature of the
radiation field, but can, at least in principle, be accomplished by appropriate mod-
elling of the behaviour of the oscillations in the solar atmosphere.

2.6 Solur-like oscillations in other stars

Just as a firm understanding of the causes of the solar oscillations would aid
the detection of similar oscillations in other stars, it is evident that by observing
them one would obtain important information about the excitation mechanisms, and
their dependence on the parameters characterizing the star. So far only tentative evi-
dence has been found for such oscillations in « Cen and Procyon (Gelly, Grec and
Fossat 1986), with an amplitude distribution that may bear some resemblance to that
of the Sun, as well as in ¢ Eri (Noves et al. 1984). In addition Christensen-Dalsgaard
and Frandsen (1983a) speculated that the luminosity fluctuations seen in cool giants
and supergiants (Maeder 1980) might at least in some cases be caused by mecha-
nisms similar to those that excite the solar oscillations. Much more definite obser-
vations are needed, however, before data of this kind can be applied to the study
of the excitation mechanisms.

3. The theory of mode excitation

3.1 The behaviour of the eigenfunctions

The theoretical description of the excitation and damping processes depends on
the details of the interactions between the oscillations on the one hand, and the
radiation field and turbulent convection on the other. These interactions, which are
to a large extent not understood, will be discussed in subsequént sections. However
certain aspects of the results, in particular the rapid decrease in the excitation or
damping rate with decreasing frequency, depend largely on simple propertles of the
oscillation eigenfunctions. These are discussed here.

We introduce the quantity

X(r) = ¢?p!/?divér (3.1)
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where c is the adiabatic sound speed, p is density, and sr is the displacement field,
so that V=asr/at. For adiabatic oscillations, and neglecting the perturbation in the
gravitational potential, X approximately satisfies

dzx i | chz Nz .
s &l - B2 [1- Koo 62)

(Deubner and Gough 1984); here wco is a generalization of Lamb’s (1909) acoustical
cut-off frequency, L=[I(l+1)]1/2, and N is the Brunt-Viisild frequency. A mode is
an oscillating function of r in the region where

chz Nz
o? 2 1 - =
ot o E2[1 - 2] o3

and generally decreases approximately exponentially outside it. The region where
equation (3.3) is satisfied is known as the trapping region for the mode.

For the solar five-minute modes, |N| <« « except in a very thin region just
beneath the photosphere which can be neglected for the present purpose. The quan-
tity Lc/r decreases rapidly with increasing r, whereas wco, which is illustrated in Figure
4, is large only near the surface. The rapid variation in weo very close to r/R=1 is
associated with the region where convection is substantially super-adiabatic. In the
solar atmosphere, vco =wco/2w varies relatively little, around a value of about 5300
MHZ.

From this discussion of the characteristic frequencies it follows that a given
mode is trapped between an inner turning point at radius r, given by c(n)/n = w/L,
and an outer turning point r, satisfying wco(fo) = w. For low , r; is very near the
solar centre; with increasing / the modes get confined closer and closer to the solar
surface. As discussed, e.g., by Christensen-Dalsgaard et al. (1985b) this variation of r
enables the helioseismic inversion of the five-minute oscillation frequencies to study
details of solar structure.

Here we are chiefly concerned with the behaviour of the eigenfunctions near
the surface. At frequencies higher than about 5300 wHz, the value of vco in the at-
mosphere, an acoustic wave can propagate out through the solar atmosphere. There-
fore, in this simple approximation, one cannot even speak of trapped modes at these
frequencies. In more detailed, nonadiabatic calculations (e.g. Christensen-Dalsgaard
and Frandsen 1983b) this shows up as a very strong damping, which may well be
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Fig. 4. The acoustical cut-off frequency, as defined by Deubner and Gough
(1984), plotted against fractional radius /R in the outermost parts of the Sun.
In the atmosphere, for r >R, wco/2w exceeds S000 wHz.

responsible for the cut-off at high frequency of the five-minute spectrum. Modes with
frequencies below 5000 wHz are evanescent in the solar atmosphere. An important
factor controlling their behaviour beneath the photosphere is the local maximum in
veo at about 2260 pHz. For v > 2260 wHz, ro is essentially at the photosphere, r=R.
In this case the interior amplitude is, in a sense to be defined below, roughly equal
to the amplitude at the photosphere, whereas the amplitude decreases in the atmos-
phere. For v < 2260 pHz, the mode penetrates an evanescent region beneath the
photosphere, whose width increases with decreasing frequency, leading to an increase
in the interior amplitude relative to the photospheric value.

The computed eigenfunctions follow the behaviour expected from the preced-
ing discussion of the mode trapping. Asymptotic analysis of equation (3.1) shows that
in the trapping region the amplitude & of the radial component of velocity (cf. eq.
(2.1)) is approximately given by

£.(r) = A(pc)V*rcos[¥(r)], (3.4)
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where 4 is a constant and y(r) is a phase function. Consequently, in Figure 5 is
plotted r(pc)l/zf, for /=1 modes of different frequency. At 3653 pHz the ampli-
tude, defined in this way, is essentially the same at r=R as in the interior; at 2286
pHz the influence of wco already causes a decrease in the photospheric amplitude
relative to its interior value, and at 1604 pHz there is a substantial evanescent zone
between the interior and the photosphere, causing the photospheric amplitude to be
considerably smaller than the amplitude in the interior. Notice that in all three cases
"((lC)l/ZE,r decreases rapidly out through the solar atmosphere.

o TPe)’g

N 1 1 1 .
098 0.985 099 0995 1.0
/R

Fig. 5. Eigenfunctions of p modes with /=1, plotted against fractional radius
r/R in the outermost parts of the Sun. The quantity shown is r&/(pc) , where
& is the amplitude of vertical velocity. The cases shown are: ——-- : v= 1604.Hz,
————— i v=2286pHz, —— : v=3653.Hz.

The properties of the eigenfunctions are also reflected in the normalized mode
energy, which I define by

§s L1e2(r) + 2(es1)ER()1pr2dr

: 3.5)
AnMIE2(R) + £(£+1)£2(R)]
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where M is the mass of the Sun. It is shown in Figure 6, for selected values of [.
At a given [, E is roughly constant for v = 3000 wHz, whereas at lower frequencies,
where the modes are increasingly confined by the evanescent region where o < wco,
E increases rapidly with decreasing frequency. E' decreases with increasing / due to
the decrease in the extent of the trapping region, as the inner turning point ri moves
outwards.
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Fig. 6. Normalized energfy Eni (cf. eq. (3.5)) for p modes of the present Sun,
as function of the cyclic frequency v. For clarity points corres ondinf to modes
e

with a given degree / have been connected. The curves are abelled with L.
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3.2 Linear damping and excitation

It follows from the theory of nonadiabatic oscillations (e.g. Ledowx and Walraven
1958; Unno et al. 1979) that the growth rate can be written as

o) (3.6)
8nMw?E,(R)2E &

Here the work integral C may be separated into a part CE associated with the
generation and transport of energy, and a part Cs associated with the turbulent
stresses. The energy part is

Ce = J‘on(r,, - 1)6—,’;—6(5 - %dlvF)r’pdr. (3.7

Here I'3-1=(alnT/alnp)ad , 8p is the Lagrangian density perturbation, and "*" denotes
the complex conjugate; F is the flux of energy, and ¢ is the energy generation rate
per unit mass (for the solar five-minute oscillations the term in ¢ can be neglected).
The stress part Cs comes from the dynamical interaction between the oscillations
and the turbulent convection. As a very crude approximation it can be represented
by a viscous term,

2

Cs = -2 e, r pdr; (38)

i.f_r]
dr | &

here the turbulent viscosity is v, ~ v, where v, and /; are the typical convective
speed and length scale. A more elaborate treatment of the dynamic effects of con-
vection was presented by Gabriel (1987); in particular he stressed that these effects
cannot be accurately modelled as a turbulent viscosity.

The integrals in equations (3.7) and (3.8) are concentrated very strongly towards
the solar surface. Thus, apart from the detailed physics, they are roughly proportional
to &(R)%. It follows from equation (3.6) that, equally roughly, n ~ E. In particu-
lar, we may expect a rapid decrease of |n| with decreasing frequency below 2500
pwHz. This is confirmed by detailed calculations; the same trend is visible in the ob-
served line widths (cf. Figure 7).
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To compute n, we need an expression for 8(divF). The flux may be written as
the sum of a radiative and a convective part,

F=Fy+Fg . (3.9)

Additional contributions from mechanical energy transport in the solar atmos-
phere should possibly be included; however these contributions are highly uncertain,
even in the non-pulsating case, and so their effect on the oscillations has been neg-
lected up to now.

Given the uncertainty in the treatment of the convective flux in the equilibrium
model, it is evident that the calculation of the convective flux perturbation must be
very uncertain also. With a precise physical description of mixing length theory it is
possible to perform a consistent linearization. This approach was used by, e.g. Unno
(1967) and Gough (1977) under different assumptions, and consequently with some-
what different results. Much simpler, essentially phenomenological, approximations
were suggested by, e.g., Cox et al. (1966). Furthermore, several calculations have neg-
lected the perturbation in the convective flux entirely. It should be noticed that even
this is not a precise proposition; thus there is a difference between neglecting, say,
8Fc and neglecting 8(divF¢). The choice of the neglected quantity is probably in
general determined by computational convenience.

The calculation of the radiative flux perturbation is, in contrast, relatively straight-
forward. It was shown by Christensen-Dalsgaard and Frandsen (1983b) that for the
purpose of calculating oscillation frequencies and growth rates the grey Eddington
approximation was adequate. A more accurate treatment of radiative transfer, includ-
ing effects of line blanketing, may be required for computation of the detailed be-
haviour of the oscillations in the solar atmosphere (Christensen-Dalsgaard and Frandsen
1984). This is needed to interpret observations of phase differences between differ-
ent types of oscillation observations (Frandsen 1986).

A problem remains, however, in most of the calculations which employ the
Eddington approximation. It follows from the equation of transfer, neglecting effects
of sphericity, that the divergence of the radiative flux is given by

divFy = 4npk(B - J), (3.10)

where w is opacity, B is the integrated Planck function and J is the mean intensity.
In the case of radiative equilibrium, divFr =0 and so B=J. This is not the case, e.g.,
in the upper part of the convection zone, where there is a transition from convec-
tive to radiative energy transport. By perturbing equation (3.10) we obtain
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Fig. 7. Half width at half maximum for low-degree p modes. For a simple
damped oscillator this corresponds to the damping rate m , in units of cyclic
frequency (c{. equation (2.6)). The crosses are observations from Isaak (1986),
and the circles are unpublished observations by Libbrecht. The curves show the
following theoretical results: : Christensen-Dalsgaard and
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Goldreich and Keeley (1977a), —++—-<+—+—<-— : Gough (1980).
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& [l'dian] = 47k [53 - &8J + 6—'C(Bo = Jo)], (.11
P Ko

where the subscript "0" denotes equilibrium quantities. The last term in this equa-
tion, corresponding to departures from radiative equilibrium in the mean state, has
been neglected in most stability calculations utilizing the Eddington approximation.
Yet Christensen-Dalsgaard and Frandsen (1983b) found that this term makes a strong
contribution to the damping of the oscillations. This can be understood, at least
partly, from the work integral in equation (3.7). The term makes the contribution

R *
—fo (ry - 1),6%5—;‘-divFRr2dr S

R : 3.12
"fo e ) 67/3 [x, + (T3 - 1)kq]ldivFgridr ( )
to"Cg" *here
e "_I"EL] : . [ologe 3.13
i [alogp g & ologT |’ Sar)

and we assumed the oscillations to be approximately adiabatic, so that the Lagrangian
temperature perturbation 87 is given by 8T/T=(I'3-1)sp/p . In the outer part of the
convection zone FR increases with increasing r, so that divFR>0; also #p and MT
are positive, 7 being as large as about 8. Accordingly, the term contributes to the
damping of the oscillation.

Given the uncertainties in the calculation of =, it is not surprising that there
is no general agreement about its magnitude, or even its sign. Ando and Osaki (1975,
1977) used the Eddington approximation, but neglected the term in Bg-Jo ; they also
neglected the perturbation in the convective flux. They found instability for a range
of modes corresponding roughly to the observed five-minute oscillations. Using the
same approximations for the radiative flux, but computing the perturbation in the
convective flux from the prescription suggested by Cox et al. (1966), Goldreich and
Keeley (1977a) obtained similar results; they also showed that the inclusion of tur-
bulent viscosity, essentially as described in equation (3.8), stabilized all modes con-
sidered. Antia, Chitre and Narasimha (1982), employing the same treatment of
radiation, but using a more elaborate description of convection, also found instabil-
ity, as did Antia, Chitre and Gough (1987) who treated the perturbation in the con-
vective flux in a manner similar to that described by Unno (1967) and Gough (1977).
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The previous calculations all suffered from the neglect of Bg-Jy . Christensen-
Dalsgaard and Frandsen (1983b) used the grey Eddington approximation, neglecting
8(divFc), but with the option of neglecting or including Bo~Jo . They found results
roughly similar to those of Ando and Osaki (1975, 1977) when the term was neg-
lected, whereas all modes were stable when the term was included. They also showed
that a more accurate treatment of the radiative transfer, using variable Eddington
factors, had little effect on the frequencies or the damping rates. Similarly, Christensen-
Dalsgaard and Frandsen (1984) found that the inclusion of the dependence of the
radiation field on the radiative frequency caused no significant changes in the damp-
ing rates, except possibly at high frequencies. Thus it appears that the grey Edding-
ton approximation, when used correctly, is adequate for treating radiative transfer in
calculations of the stability of solar oscillations.

Kidman and Cox (1984) used the diffusion approximation for radiation and neg-
lected the perturbation in the convective flux. They obtained damping rates that were
quite close to those found by Christensen-Dalsgaard and Frandsen (1983b); this is il-
lustrated in Figure 7, where the corresponding line widths are plotted, together with
those obtained by Goldreich and Keeley (1977a), when turbulent viscosity was in-
cluded. Also shown are line widths obtained by Gough (1980) for radial modes; he
used the diffusion approximation for radiation, but described the effects of convec-
tion according to the time-dependent mixing length theory developed by Gough (1977);
with the exception of two modes, at frequencies of 4188 and 4340 pHz, all modes
were found to be stable. Using the same technique, Berthomieu et al. (1980) found
that five-minute modes of high degree were stable as well.

It is of great interest to compare the computed line widths with those observed
(see also Christensen-Dalsgaard, Gough and Libbrecht 1988). Particularly striking is
the similarity in shape, and actual values, between the observations of Libbrecht and
the computations of Gough, at frequencies exceeding 3000 wHz. At lower frequen-
cies the observed width is substantially higher than any of the computed values. This
feature may also be visible in the line widths obtained by Isaak (1986), although the
larger scatter makes a comparison more difficult. It is evident that the observations
now have a precision which permits meaningful comparison with theory; and it is
striking that the treatment of convection used by Gough appears to be favoured.

3.3 Stochastic excitation of solar oscillations

Although far from conclusive, the results discussed in the preceding section may
be taken to indicate that the five-minute modes are stable in a linear stability analy-
sis. In that case external sources must be sought for their excitation. Lighthill (1952)
demonstrated that fluctuations in a fluid, caused for example by turbulence, may
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generate sound waves. If the fluid is in a resonant cavity, the normal modes of the
cavity would be excited. This is the mechanism responsible for sound generation in,
e.g, a recorder or a flute. Thus it is a priori plausible that the turbulence in the
~solar convection zone may excite the five-minute oscillations.

Before discussing this mechanism in more detail it is instructive to analyze the
case of a simple, damped harmonic oscillator excited by random forcing (e.g. Batchelor
1956, section 4.1). Thus we consider a function A(r) satisfying

2
% v 2088 4 aga - f(0), (3.14)

where f(t) is the forcing. In the absence of forcing the solution to equation (3.14)
is of the same form as in equation (2.2), with a frequency w=( mdz_nz)llz' To solve
the equation in the presence of forcing, we take the Fourier transform. Letting A(w’)
and f-((n’) be the transforms of A(t) and f(r) respectively, we obtain

Alw’) = flw") (3.15)

if terms arising from the initial conditions on 4 are neglected. Hence the average
power spectrum Py(w’) = <|A(w’)|2>is

Palw’) = — P'z(‘"" . (3.16)
(@ - w'2)? + 47w’ 4 (wy - w')? + 72

2

if the average power spectrum Pf(w’) = < |f(m’)|2> of the forcing varies slowly, and
Imnl << wo. Thus the spectrum is approximately Lorentzian, as for the free, damped
oscillator, with a width determined by the linear damping rate. Notice also that the
integrated power is

[ NV e W L. (3.17)

[n] 4 o2
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Thus the power in the oscillation is proportional to the power of the forcing at the
oscillation frequency, and inversely proportional to the linear damping rate.

The excitation of solar acoustic oscillations by turbulent convection was ana-
lyzed more carefully by Goldreich and Keeley (1977b). They considered the different
non-linear terms introduced by the interaction between convection and pulsation, and
identified as most important the term coming from the Reynolds stress. By expand-
ing the motion on the linear eigenfunctions they obtained a set of amplitude equa-
tions, the solution of which is at least qualitatively similar to the solution discussed
above. In particular, the total power in a mode of oscillation is analogous to equa-
tion (3.17), but with the forcing power replaced by an integral over the star involv-
ing the Reynolds stress, appropriately weighted by the eigenfunction. Goldreich and
Keeley assumed that the viscous term in equation (3.8) dominated the damping. Both
forcing and damping were then determined by the convection, and so, consequently,
was the resulting mode amplitude. By approximating the integrals for the forcing and
damping, they obtained the very simple, and intuitively appealing, result that the
mode energy was given roughly by the energy in the convective eddy whose time
scale matched the pulsation period.

It is instructive to consider Goldreich and Keeley’s result in a somewhat simplified
form, which, it is hoped, still captures the most essential features. The energy in a
mode can be written as

R der 4
-é /2 fo [ dr ] vim, T, exp [-(gw-,-.)z] r2pdr
3 16[7;]

3.18
foke,zrzpdr _—

Here wvi, m; andt; are the typical velocity, mass and time scale of a convective eddy
at the given point in the Sun. Using also equation (3.5) to relate the integrated
energy to the surface velocity V, and equation (3.6) for v, we finally obtain that

: 2
= J'OR [—d:r' ] vém, Texp [-(4wr,)? | r2pdr
3 =

" (3.19)
32n'/2ME [Re(C) | £
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To estimate V2 we require an expression for C. Following Goldreich and Keeley,
I use equation (3.8) for the stress part. However, in contrast to them I also include
the energy part, which I approximate, quite roughly, by the term coming from the
departure of the mean state from radiative equilibrium, given by equation (3.13).
Note also, in this term, that from the equation of continuity sp/p~-dg&/dr.

The dominant contributions to the integrals in equation (3.19) come from a re-
gion whose thickness is only about 10* R. From Figure 5 it follows that it is then
not unreasonable to assume dg/dr to be constant. In equation (3.13) I also assume
that (T3-1)At , where FtT=ny+(C3-1)#T , is constant. Then this term can be written
as

L P g
(g - 1&g [—(—17-] ferwFRr’dr x -(Cy - 1)xg [—de;—] 4%, (3.20)

if we assume that the lower limit rr of the integral is at a point where energy is
carried entirely by convection; here L is the surface luminosity of the Sun. Similarly,
v, me and Ty are replaced by constant average values; also, in accordance with equa-
tion (3.17), "resonant" eddies are selected whose time scale is the same as the pul-
sation period. We then obtain, e.g., for the numerator in equation (3.19)

2

d¢. 1’ R d¢ A
[ '] v;‘mmfrcrzpdrz [ '] v?m.llle, ..4321)

dr Tdr

where we also neglected the exponential factor and used T .~l/v ; here am is the
mass contained in the region contributing to the convective integral. For the inte-
gral in equation (3.8) a similar approximation is made. By combining equations (3.19)-
(3.21), we finally obtain

3

Vs —=
128/2ME

-1
mtvf[l E 731-(1‘;. - 1)&; w-Z] : (3.22)

v 1, om

In equation (3.22) m,v,2/2 is the kinetic energy of a convective eddy. Thus when
the second term in the square brackets is neglected, we obtain a result very similar
to that of Goldreich and Keeley, viz. that the energy in a mode is similar to the
energy in a convective eddy. To estimate the size of the term coming from radia-
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tive damping, we take am =5x10""M, which includes most of the region contribut-
ing to the convective integrals, and evaluate the remaining quantities at the maxi-
mum of the superadiabatic gradient. The result is

_2 -
P4 4[ Lty ] . (3.23)

This result evidently only provides an order-of-magnitude estimate. Thus Goldreich
and Keeley (1977b) suggest that "resonant" eddies dominate the turbulent viscosity
and show that this leads to the inclusion of a factor proportional to w2 in the tur-
bulent viscosity, thus eliminating the frequency dependence in equation (3.23); further-
more, the notion of a turbulent viscosity is clearly only at best a rough approximation
to the actual interactions between convection and oscillations. Also the treatment of
radiative damping only includes one of the contributions of radiation to the damp-
ing or excitation of the oscillations. Nevertheless the result suggests that’ radiative”
damping makes a substantial contribution in reducing the amplitude. Notice that this
is not inconsistent with the line widths shown in Figure 7.

An attractive feature of the stochastic excitation model, in the form discussed
here, is that the predicted mode energy is essentially only a function of frequency;
thus the "resonance" condition on the convective eddies only concerns their timescales,
not their spatial scales. This is in agreement with the observatiohs of Libbrecht et al.
(1986). Without radiative damping, Goldreich and Keeley (1977b) obtained pulsation
amplitudes that appeared inconsistent with early observations of oscillations in the
apparent solar diameter. However Gough (1980) and Christensen-Dalsgaard and
Frandsen (1983a) showed that amplitudes based on the simple energy equipartition
results were in rough agreement with the observed values, if suitable choices were
made of various undetermined constants in the theory (eg in the relatmn between
eddy timescale and oscillation period). Also the factor E'!in equatlon (3.22) causes
a decrease in the amplitudes with decreasing frequency, although apparently not as
rapidly as observed. On the basis of equanon (3 23). it might be expected that the
inclusion of the radiative dampmg ‘would tend to decrease the amplitudes preferen----
tially at low frequencies, hence 1mprov.mg the agreement in shape between the pre-
dicted and observed spectrum. However the predicted values of the amplitudes are
also decreased, and it may therefore be difficult to reproduce the observed values.

Very recently Goldreich and Kumar (1988) found that dipolar terms, neglected
by Goldreich and Keeley (1977b), dominate in the generatlon of acoustic waves by
turbulent convection. As a result, very roughly, mv® should be replaced by mc?
the expression for the mode amplitude, ¢ being the sound speed. Since the maxi-
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mum Mach number in the solar convection zone, assuming mixing length theory, is
of order 0.3, this might increase the predicted amplitudes by at least a factor 10. As
far as I am aware this result has yet to be applied in detail to the prediction of the
amplitudes of the solar five-minute oscillations. However, taken together with an ade-
quate treatment of radiative damping, it offers some hope that it will become possible
to understand the observed amplitude distribution.
Libbrecht et al. (1986) made an essentially phenomenological interpretation of
their observed amplitudes, based on the excitation model discussed above. In Figure
3 they show with solid lines a quantity snmllar to E”, obtained from computed eigen-
functlom The dashed lines show (T|E) where n was determined from the observed
line widths of Libbrecht and Zirin (1986) for v>3000 wHz, and supposed to be con-
stant for smaller frequencies; thus for v <3000 pHz the dashed and solid lines coin-
cide. The latter quantity clearly bears a striking resemblance to the observed power.
On this basis they suggested a phenomenological model for the mode excitation,
where the modes are in equilibrium with convection at low frequencies, leading es-
sentially to a constant mode energy, whereas the mode energy is decreased by ad-
ditional sources of damping at higher frequencies. This description clearly finds some,
although not complete, confirmation in the excitation model described above.

3.4 Phase relations for solar oscillations

Fairly detailed observations now exist of amplitude ratios and phase differences
between different types of oscillation measurements. Since these quantities depend
on the behaviour of the oscillations just beneath and in the solar atmosphere, they
provide information about the damping and excitation processes going on here. In-
terpreting this information constitutes what B.W. Mihalas has called a Non-BOTE*
problem. The observed quantities are based on measurements of radiative intensity,
typically in a narrow part of a spectral line; hence they represent complicated inte-
grals over the solar atmosphere of the behaviour of the oscillations. Nevertheless,
given computation of the oscillation eigenfunctions in the atmosphere, it is in prin-
ciple possible to compute the response of the intensity to the oscillation, and hence
the observable quantity.

In Figure 8 are illustrated results of such a calculation, carried out by Frandsen
(1986) on the basis of eigenfunctions computed by Christensen-Dalsgaard and Frandsen
(1984). The solid line shows the local phase difference between temperature and

* Back Of The Envelope
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velocity, whereas the squares give the computed, observable quantities corresponding
to different positions in the spectral line, and hence to different levels in the atmos-
phere. The substantial difference between the local and the observable quantities at
large optical depths indicates the significance of the non-local nature of the radia-
tion field. At small optical depths, corresponding to the central parts of the line, the
local and the observable quantities are in closer agreement. Even more striking,
however, is the comparison between the computed and the observed quantities, in-
dicated as circles with error bars. The agreement is reasonable at small optical depths,
whereas there are very substantial discrepancies deep in the atmosphere. This indi-
cates a serious deficiency in the computed eigenfunctions. Indeed an obvious source
of error is the neglect by Christensen-Dalsgaard and Frandsen of the perturbation in
the convective flux.
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Fig. 8. Phase delay between temperature and velocity. The solid line shows the
phase difference between the temperature and velocity eigenfunctions (positive
values corresponding to temperature leading velocity), as a function of optical
depth 7. The squares give computed phase delay‘z between an intensity and a
velocity signal, at various positions in the 5434 A Fe 1 spectral line, and the
circles with error bars give the corresponding observed values, largely from
Staiger et al. (1984). The wavelength distance from the line core has been con-
verted to an optical depth by means of suitable contribution functions. From
Frandsen (1986).
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That this may be the principal source of the error is indicated by the results
obtained by Gough (1985). He compared phase differences, based on the calculations
by Gough (1980) using the diffusion approximation but including the perturbation in
the convective flux, with observations. The results were in reasonable agreement with
the observed data of Frohlich and van der Raay (1984), where velocity was compared
with continuum intensity oscillations.

These results suggest that there are excellent possibilities for learning about the
excitation of solar oscillations from phase measurements. Since the diffusion approxi-
mation for radiation fails in the solar atmosphere, a more detailed analysis requires
the combination of the Eddington approximation for radiative transfer with a treat-
ment of the convective flux perturbation. This has yet to be carried out.

4,Conclusion

We are still far from understanding the causes of the solar five-minute oscilla-
tions. Thus even the fundamental question of their stability or instability is unde-
cided. On the basis of the evidence presented in Section 3, my personal preference
is for assuming that the modes are stable and excited by convection. To the extent
that this excitation mechanism has been studied (which is quite rudimentary), it ap-
pears to give results that are roughly, although not in detail, consistent with the ob-
servations. The alternative, viz. that the modes are unstable, has so far not been
developed to the same extent. Thus, apart from the questions about the instability,
the mechanisms that limit the growth of the modes and hence determine their ampli-
tudes have not been identified.

The development of helioseismology has up to now concentrated on the measure-
ment and interpretation of oscillation frequencies. However there is now an increas-
ing amount of observational data relating to the processes causing the oscillations.
Thus the study of these processes should undergo a rapid evolution in coming years.

A striking property of the results discussed in this paper is that the treatment
of convection can now be tested observationally. Thus both the computed line widths,
and the phase relations, seem to be sensitive to the inclusion of the convective flux
perturbation in the calculations, with the formulation suggested by Gough (1977)
giving results in reasonable agreement with the observations. More detailed inves-
tigations are required to establish the extent to which the observations can distin-
guish between the finer details in the description of time-dependent convection. Since
convection is probably the most significant uncertainty in the theory of most types
of pulsating stars, the information that may be obtained from studying solar oscilla-
tions is evidently of the greatest importance.
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THEORY AND OBSERVATIONS OF PULSATING WHITE DWARF STARS

D.E. Winget*
Department of Astronomy and McDonald Observatory
University of Texas, USA

Abstract

The pulsating white dwarf stars are among the simplest of all stars
undergoing nonradial pulsations; this is a reflection of the simplicity in the
structure of the equiliErium star. This simplicity provides the Eope for un-
derstanding these stars and using them to unravel the physics of the struc-
ture and evolution of white dwarf stars, and to achieve a better understanding
of the general phenomenon of nonradial stellar pulsation. In this review
we will discuss the status of the field, and identify the major problem
areas that remain.

1. Motivation for studying white dwarf pulsators

The pulsating white dwarf stars are astrophysical laboratories tailored to the
study of nonradial stellar pulsations and the physics of compact objects. In this re-
view we summarize the progress made in exploiting these laboratories, and examine
the problems at the frontiers of the field.

In the study of nonradial stellar pulsations you have to say that the buck stops
here, with the pulsating white dwarf stars. By this I mean that if we cannot under-
stand the nonradial pulsations in white dwarfs, it is probably hopeless to try and un-
derstand other nonradial pulsators. This extreme position is defended by four basic
considerations. First, the underlying structure of the white dwarf stars is arguably the
simplest of all stars. Second, the amplitudes of the pulsations are large enough to
be observable, yet small enough (in many cases) to allow a linear treatment. Third,
there is a veritable wealth of pulsation periods observed in many of the pulsators
— each period providing independent clues about the underlying structure of the
star. Fourth, and finally, the pulsation periods are extremely short (100-1000 s), so
that many cycles can be recorded in a single observation. Fortunately, as the rest of
this review will indicate, we have been able to reach some level of understanding of

* Aifred P. Sloan Research Fellow
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the pulsations in the white dwarf stars. Thus we have the prospect of applying much
that we have learned, dnd will learn in the future, to other nonradially pulsating
stars.

These multi-frequency pulsations probe the deep interiors of the compact ob-
jects, allowing us to explore the physics of hot, high-density matter, studying the
equation-of-state for conditions otherwise inaccessible. Additionally, we can use the
pulsations to map out the compositional structure of the star from the photosphere
to the center. Knowledge of the composition of the central regions tests our under-
standing of pre-white dwarf evolution, and nuclear reaction rates. Determination of
the compositional structure of the outer layers will develop our knowledge of chemi-
cal diffusion in the presence of strong gravitational fields. Thus we can use the pul-
sations to refine our basic understanding of the structure and evolution of the white
dwarf stars.

2. Basic properties of white dwarf stars

The first part of the white dwarf moniker is misleading — these stars have sur-
face temperatures ranging from in excess of 150,000 K (white) down to about 3,000K
(red). The corresponding range in luminosities is 4 >log(L/Le)>-4.5, indicating that
they occupy the lower left half of the H-R diagram as shown in Figure 1. In spite
of the enormous range they occupy in the H-R diagram, the white dwarf stars are
a remarkably homogeneous class of objects.

Plotting the isolated, or non-interacting binary white dwarf stars in the theoreti-
cal H-R diagram, we find a more or less narrow distribution about an evolutionary
sequence for a 0.6M@ planetary nebula nucleus (see the solid line in Figure 1).
Indeed, observational determinations of the mass function for white dwarfs yield a
sharply peaked distribution with about 0.6M@ for the mean mass and o~0.1 (cf.
Weidemann and Koester 1984 and references therein). Except for the hottest white
dwarf stars, the evolution is at nearly constant radius, with the primary pressure sup-
port for the star coming from degenerate electrons. The weak temperature sensitiv-
ity of this source of pressure support insures an approximate separation of mechanical
and thermal properties — greatly simplifying the study of the evolution of the white
dwarf stars.

Post-Main Sequence evolutionary calculations suggest that the cores are com-
posed of a mixture of carbon and oxygen; there is little agreement at present, however,
on the relative abundances of the two elements due to uncertainties in both reac-
tion rates and pre-white dwarf evolution (¢f. Winget and Van Horn 1988, and Maz-
zitelli and D’Antona 1988). Observations imply that most of these cores are coated
with either a thin veneer of nearly pure hydrogen (white dwarfs of spectroscopic type
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DA) or a thin veneer of essentially pure helium (white dwarfs of spectroscopic type
DB): Roughly 80% of the white dwarfs are DA’s, and most of the remaining stars
are DB’s (about 15%). The relative purity of the surface layers can be successfully
understood in terms of chemical diffusion in the presence of high surface gravities,
log g—~8. The masses of the surface veneers, however, are not tightly constrained by
theoretical evolutionary considerations, or direct observation. Considerations of the
nuclear burning in prior evolution imply only that the mass of the hydrogen layer in
the DA stars is less than about 10™* M@, and the mass of the helium layer is less
than about 10 M.

Thus the basic structure of the white dwarfs is simpler than perhaps any other
kind of star, although there remains a number of uncertainties regarding the details.
Removing these uncertainties is one of the goals for the study of pulsating white
dwarfs. We can hope to do this through the comparison of the pulsation properties
of theoretical models with the observations: a technique known as asteroseismology.
A partial list of what we can hope to learn is given below.

(1) accurate masses for individual objects — spectroscopic masses are only mean-
ingful as an average over large samples of stars. The only individual white dwarf
stars with reliable masses are the handful in binary systems.

(2) masses of the surface layers — the evolutionary calculations leave us with
nearly an order of magnitude in the logarithm uncertainties in these masses, and no
clue as to whether or not there is a wide distribution of these layer thicknesses oc-
curring naturally.

(3) core composition — it would help considerably if we had an independent
way of determining the ratio of carbon to oxygen in the interior, and of investigat-
ing if the cores may contain significant amounts of even heavier elements.

(4) the role of shell-burning sources — we need to establish the existence of
these sources, and if they exist, pin down their luminosities and durations.

(5) origin and evolution of the two principal spectroscopic types — the white
dwarfs come in two main flavors, DA and DB, and we really don’t know if they
evolve separately beginning with dramatically different origins, or if they represent
only slightly different cases from a continuum of similar progenitors. Here the ob-
servational evidence, although by no means conclusive, is beginning to favor the lat-
ter possibility, and even suggest that the two types of stars intermingle, transforming
from one to the other once or even several times during their evolution (cf. Fontaine
1987).

(6) structure of the composition transition zones — diffusion theory suggests
that these transition zones exist, and predicts their structure, but we need a way to
test these ideas.
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(7) ages as a function of temperature — the age of the white dwarf stars as a
function of temperature, or equivalently luminosity can be calculated theoretically,
but again, this needs to be calibrated by observation — particularly since the age of
the coolest white dwarfs is an important measure of the age of the disk.

3.General properties of the pulsating white dwarf stars

I will make no attempt here to deal with the historical development of the
field of pulsating white dwarfs — even though this contains considerable lessons for
workers in other areas of nonradial stellar pulsations — for this the reader is re-
ferred to Winget (1987). After summarizing the pulsation properties, I will discuss
only the important developments since that review; other recent reviews have been
published by Kawaler (1987), Starrfield (1987), Cox (1986), and Winget (1986).

The pulsating white dwarf stars, or more accurately the compact pulsators, divide
into at least three, and possibly four, distinct classes of pulsating variable stars, named
according to the classification scheme of Sion et al. (1983). If we lump the two hot-
test classes together, then the three remaining classes are almost uniformly distributed
in log Te, and lay along white dwarf evolutionary tracks in the H-R diagram (see
the sketch of the instability regions in Figure 1). In Figure 1, note that I have sub-
divided the hottest class, the DOV stars, into two classes, the DOV and the PNNV
stars. | have treated the star K1-16 as distinct from the DOV stars for three fun-
damental reasons: unlike the four DOV’s it is embedded in a nebula, its pulsation
periods are a factor of three longer than those in the DOV stars, and finally its
luminosity is considerably higher than that of the DOV stars. For these reasons we
must be cautious with this star; it is tempting to lump it with the DOV’s but this
implies that the driving mechanism and the mode selection mechanism are the same
— clearly a dangerous assumption at this time.

Representative light curves of stars in the hotter classes can be found in Winget
(1987), and light curves of the DAV, or ZZ Ceti stars, can be found in Robinson
(1979), and references therein.

In spite of the wide separation of the classes in the H-R diagram, they share
remarkably similar pulsation properties. These properties are summarized in Table
1. All are multi-periodic, with periods in the range from about 100 s to 2,000 s (al-
though this upper limit may be an observational selection effect imposed by limits
of the observing technique). All are low-amplitude pulsators in the optical, with typi-
cal semi-amplitudes of individual modes of one percent or less.

" We can show that the similarity of the underlying structure of these objects can
account for much of the similarities in the observed properties. Let’s begin by noting
that the high mean densities of these objects imply that the radial pulsation timescales
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for even the lowest density PNNV and DOV stars is considerably less than 100 s,
and for the DBV and DAV stars it is less than 10 s. This suggests that we concen-
trate on the nonradial modes.

Table 1. Observed properties of pulsating white dwarf stars

Class Spectra log g logL/L, i A(070) P(s) Fract. Amp.
(range) (range)
typical typical

PNNV HeIIl, CIV >6 3-4 >100,000 (>1000)
nebula 1500 0.01
DOV HeII, CIV, OVI 7 2 >100,000 (300-850)  (<.001-.04)
abs. w/nar. 500 0.01
em. core
DBV Hel 8 -1.2 25,000 (140-1000) (<.001-.04)
pure He abs. 500 0.02
DAV H 8 -2.8 12,000 (100-1200) (<.001-.1)
pure abs. 0.01

We can look at these with the aid of a diagram: the run of the square of the
Brunt-Viisild frequency, N and the square of the acoustic, or Lamb, frequency, S/
through a typical star. Flgure 2 is such a diagram (for /=2) of a typlcal model rep-
resenting a DAV with M=0.6Me, Ma/Me =10 10, and MHe/Mo—IO Local analy-
sis of the asymptotic dispersion relation for nonradial oscillations shows that pressure
modes or p -modes, propagate only when the mode frequency is greater than both
N and S7. The reverse is true for the gravity modes, or g-modes: they propagate
locally only when the mode frequency is less than both N? and S/ (for an elemen-
tary discussion of propagation zones and local analysis see Cox 1980, and Unno et
al. 1979). From this diagram it is clear that modes which have frequencies corre-
sponding to those observed are the nonradial g-modes.

The dramatic drop in N? as we go towards the interior (the bulk of the star
— note the logarithmic scale of the horizontal axis) is caused by strong electron
degeneracy. In contrast, the stiff equation-of-state associated with the strong degener-
acy implies that the central condensation is low, and so the acoustic frequency rises
only very gradually as we approach the interior. Thus the p-modes have a rather
wide propagation zone and hence significant amplitudes even in the interior, while
the g-modes are concentrated much more towards the surface. Note that these cir-
cumstances are reversed over stars in the upper right half of the H-R diagram (cf.
Cox 1980), where because of the high central condensation we are used to thinking
of p-modes as envelope modes and g-modes as core modes.
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Fig. 2. A propagation diagram for a DAV model from a 0.6Me evolutionary
sequence with log MH/Mswar=-10, and log MHe/Msar=-3. Note that the center
is on the right and the surface is on the left. The shaded regions indicate where
g-modes are locally propagating.

The transition of the g-modes from core-dominated modes to envelope-domi-
nated modes can be traced qualitatively with the aid of evolutionary calculations fol-
lowing the contraction and cooling of a model planetary nebula nuclei. Figure 3
(adapted from Kawaler, Hansen, and Winget 1985) shows the region of period for-
mation for an /=1, k=25 mode in evolutionary models with luminosities ranging
from 3 =log(L/L®)=1. The plotted line in each figure is the envelope of the arbi-
trarily normalized Epstein weight function, regions where it is large represent regions
of highest weight in determining the period. We can see that the increasing degener-
acy in the interior gradually squeezes the mode to the surface. This plot shows that
the transition towhite dwarf-like envelope-dominated modes occurs around log(L/Le)~2,
about the luminosity of the DOV stars. Because we are measuring the degree of
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central concentration in the object (or equivalently the importance of electron degener-
acy), we can use Figure 3 to establish a rough definition of a white dwarf star. Thus
stars with log(L/L@)=2 are best referred to as pre-white. dwarf objects.
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Fig. 3. The enve]oEe of the Epstein weighting function, arbitrarily normalized
to unity at the highest point in the curve, for a k=25, /=1, mode in five mod-
els from a 0.6Me evolutionary sequence. This indicates the relative contribu-
tion of each region to the period formation. The effective temperatures and
luminosities of the models are (a) log T,=171,000K , log L/Le =3.0,
log Te=146,000K, log L/L@=2.5, (c) log ,,b’e 123,000K, log L/Le=2.0, (d)
log Te=100,000K, log L/Le=1.5, (e) log Te=81,000K, log L/Le=1.0 .

This transition seems to underscore our earlier point about the danger of lump-
ing K1-16 (with log(L/L@)>3) in with the DOV stars. Figure 3 suggests that inte-
rior properties may be much more important than envelope properties both for
destabilizing the pulsations, and for producing the filter mechanism which determines
what modes are observed. On the other hand, the surface concentration also increases
rapidly with increasing k, and as indicated in Table 2 the values of k needed to ac-
count for the observed periods in K1-16 are a factor of 2 higher than those needed
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for the DOV stars. Thus the envelope may still be the most important region, even
for K1-16, for destabilizing the oscillations and for selecting the specific modes.
Clearly this point needs to be looked at very carefully in the future.

Table 2. Theoretical summary of pulsating white dwarf stars

Class Driving Mechanism 1 k (1=1)
PNNV C, O p.i.?, nuclear? 1-4 50-100
DOV C, O p.i.?, nuclear? 1-4 20-40
DBV He p.i. 1-4 10-20
DAV Hp.i. 1-4 Lirli0

Table 3. Observational limits on rates of period change

Object Type P log P/(dP/dt) Theoretical
(s) (yr) Expectation

PG1159-035 DOV 516 5.83 6

PG1351+489 DBV 489 >7 7-8

R 548 DAV 213 >8 9.6

L 19-2 DAV 114 >8 9.6

G 117-B15A DAV L) 29 9.6

Indeed, Table 3 indicates while all the pulsating white dwarf (and pre-white
dwarf) stars seem to be pulsating in nonradial gravity-modes with very low spherical
harmonic index, there is about a factor of 2 change in the values of k between each
class. What is most interesting is the way in which this change occurs. As these ob-
jects evolve they become less centrally condensed, and the Brunt-Viisild frequency
decreases so that following an evolutionary track, as we come to each class we can
drop down to smaller values of k and the modes corresponding to the observed pe-
riods remain envelope-dominated.

The exact significance of this class-to-class behavior of the pulsating variables
has probably not been fully appreciated by us yet, but does, again, provide a hint
that to a large extent the envelopes control the pulsations. This is born out in that
the driving mechanism for the DAV and DBV stars has been conclusively established
as resulting from the surface H and He ionization zones, respectively, in each class
(¢f. reviews by Winget and Fontaine 1982, Van Horn 1985, Kawaler 1987, and Starr-
field 1987). Further, the most viable mechanisms which have been proposed for ex-
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citing the observed oscillations in the PNNV and DOV stars are partial ionization
of oxygen and possibly carbon in layers just below the surface, and nuclear burning
of He in a thin shell near the surface. Both these mechanisms have serious prob-
lems, however, as we will discuss in Section 4.

The envelope also provides a possible filter mechanism for these stars. The
need for this arises when we consider any of the partial ionization zone excitation
mechanisms (although nuclear burning seems to carry its own sharp filter, see Sec-
tion 4 and Kawaler 1987). These excite a very broad, roughly Gaussian distribution
of modes with the peak near the thermal timescale at the base of the partial ioni-
zation zone. This would indicate that modes of consecutive k, for at least the lowest
values of /, should all be observed. This is not the case, at least not for most of
these stars. While the spectra of observed modes are dense, they are almost never
observed to be as dense as the possible oscillation spectra. Hence, there is some fil-
ter mechanism at work which enhances some modes and suppresses others.

One possible selection mechanism is resonant mode-trapping. This refers to the
lower kinetic energies associated with modes whose eigenfunctions resonate with the
stratified surface layer thicknesses. This selectively enhances the excitation rate of
the trapped mode (within the Gaussian distribution of unstable modes) over its neigh-
boring modes, and may lead to saturation of the driving mechanism by the most un-
stable modes. Unfortunately all the calculations that have been done to date necessarily
have been linear, and it is an inherently nonlinear problem. This selection mecha-
nism has been described in detail elsewhere for DAV and DBV stars (Winget, Van
Homn and Hansen 1981, Dolez and Vauclair 1981, and particularly Winget and Fon-
taine 1982). Most recently the consequences of these surface layer resonances are
being investigated in the context of their effects on rates of period change by Wood
(cf. Wood and Winget, these proceedings).

This sort of selection mechanism has also been discussed with application to
the DOV and PNNV stars by Kawaler (1987) and Cox (1987). Here gravitational set-
tling has not yet had time to produce a sharp chemical stratification, but nuclear
shell burning may have done just that. In this case concentration gradient effects may
initially cause chemical diffusion to work at blurring the composition transition zone
with time — and we will speculate that this idea may help in understanding PG1159-
035’s recent behavior (see below). If the studies of mode-trapping are successful it
is reasonable to hope that we can begin to map out surface layer thicknesses in in-
dividual stars.

We have discussed the nonradial g-mode pulsations as envelope-dominated modes
in white dwarfs, temporarily ignoring the fact that they are global pulsations probing
the entire star. It is this global nature which makes them interesting in another con-
text: they provide an exciting opportunity to measure evolutionary timescales directly
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— as Kawaler (1986) aptly put it, "turning stellar evolution into a spectator sport",
This is possible because we have developed techniques to measure rates of period
change through changes in phase. For white dwarf stars this period change translates
in a very straightforward way, at least to order of magnitude, to an evolutionary
timescale.

This can be seen, dimensionally, by differentiating the asymptotic (in k) expres-
sion for the period of nonradial g-modes, and substituting the expression for N?% in
a degenerate interior. The result is an expression for PIP which is the sum of two
terms, one proportional to Rstar/Rstar, and the other proportional to Frorel Toore (cf.
Kawaler 1987, and Winget 1987). For our purposes we can take I.?_m,,~0, and see that
PIP is proportional to e-folding timescale for the core temperature, i.e. the evolu-
tionary timescale. (The observational technique, as well as the theory is discussed in
considerable detail elsewhere, cf. Robinson and Kepler 1980, Winget et al. 1985, Winget
1987, Kawaler 1987).

Because of the fortuitous locations of the instability strips we have 3 well-sep-
arated temperature domains in which we can hope to measure evolutionary timescales.
Thus we can hope to obtain a very accurate calibration of the white dwarf cooling
sequence using the pulsating white dwarfs. Observational calibration will be indis-
pensable in accurately determining the age of the coolest white dwarfs, and thereby
the age of the galactic disk (¢f. Winget, Nather, and Hill 1987).

Having taken a look at the overall picture for the pulsating white dwarfs, let’s
go ahead and look class by class at some of the recent developments, and especially
some of the problems, that have arisen.

4. A class by class glance at the pulsating white dwarf stars: what we know
and what we know we don’t know

4.a The DOV and PNNV stars

The hottest groups, the DOV stars and PNNV stars, have effective tempera-
tures in excess of 100,000 K. The total number of known pulsators in these groups
has risen to five with the discovery of pulsations in the DO star PG0122 + 200 by
Grauer et al. (1987a).

Surveys for additional pulsating DOV and PNNV stars have also turned up 15
null results (Grauer et al. 1988a). These candidates were selected because of their
similarity to the other DOV and PNNV stars: 3 were spectroscopically identical with
PG1159-035 and 4 were similar to K1-16. The absence of pulsations in these objects
presents a serious challenge to our understanding of the driving mechanism in these
stars.
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Another class of problem exists with the proposed driving mechanisms for these
stars. First consider the possibility of driving due to partial ionization of an abun-
dant element near the surface. The only elements which could reasonably fill the bill
are carbon and oxygen — hydrogen and helium would be completely ionized at these
temperatures. The problem arises when we consider how to get the carbon/oxygen
close enough to the surface to develop partial ionization zones.

While we do see C and O absorption features in most of these stars, we also
see very strong He II absorption features. Also, the DOV’s are a large fraction of
the objects in this part of the H-R diagram; they must be supposed to be progeni-
tors of a significant fraction of white dwarf stars, say the DB’s (the problem will
only get worse if we assume they are progenitors of DA stars). Thus we can explain
all of the above if we assume the DOV’s have a thin layer of He overlaying the
C/O partial ionization zone, and further assume that the radiative He layer does not
mix with the underlying convective C/O layer (cf. Starrfield 1987 and references
therein). However, once the He becomes ionized, near 7, ~ 30,000 K, the whole sur-
face mixes (Fontaine 1987) and we are left with no DB’s, just C/O stars — which
are not observed.

Thus we, full of hope, turn our attention towards the possibility of driving the
oscillations with nuclear shell burning sources, particularly He-burning shells. Unfor-
tunately there are serious problems here too. Kawaler (1987) has investigated this
possibility extensively with evolutionary models of PNNV and DOV stars incorporat-
ing active He-shell burning sources. This mechanism does produce unstable g-modes
in the models, but none with periods longer than about 200s. Not only do we not
observe any periods this short in any of the pulsators, but an extensive survey of
planetary nebula nuclei — where the shell burning sources should be most active —
by Hine (1987) has produced only null results. So we are still at a loss to explain
why the DOV and PNNV stars pulsate, in spite of nature’s obvious ease in produc-
ing them.

The work on shell-burning sources has produced interesting results, however. It
suggests that planetary nebula nuclei do not have active shell-burning sources at all,
indicating that the mass loss in the planetary and pre-planetary nebula stages must
extinguish the shell sources. This result can be combined with diffusion theory to
produce a self-consistent picture of the spectral evolution of white dwarfs, wherein
the DO stars — including the DOV stars — are the progenitors of both the DA
and DB white dwarf stars (see Fontaine 1987 for a complete discussion of this idea).

Although the amplitude of the DOV pulsation modes is relatively small in the
optical, the high effective temperatures of the DOV stars suggest that it is very in-
teresting to look at shorter wavelength. Indeed, Barstow et al. (1986) have reported
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the first observation of pulsations in the X-ray band. Their observations in the soft
X-ray (44-150 A) demonstrated large amplitude pulsations (up to 17% for individual
mode semi-amplitudes) at the same frequencies detected in the optical.

The power spectra of the light curves of these stars separate into distinct bands
of power, with most bands exhibiting some fine structure. In a series of recent papers
Kawaler (cf. Kawaler 1987 and references therein) has shown, using the observations
of PG 1159-035, that the period spacing between these bands can be used to deter-
mine the mass of the DOV to two significant figures, as well as to determine the /
values of the observed modes. Observations of the new DOV, PG 0122 + 200, by
Hill, Winget, and Nather (1987), have resolved the period bands present in it. They
find the same sort of regular period spacing expected by Kawaler — thereby demon-
strating the usefulness of this new technique to extract seismological information from
the DOV stars. For this reason the resolution of the band structure in the other
DOV stars should be of highest priority.

Recent re-observations of PG1159-035 (Koupelis and Winget 1987), have revealed
that at least four new bands of power were present in the 1987 data which was not
present above the noise in the considerable body of archival data from 1979-1984.
Most puzzling is that the eight bands of power previously reported in the star (Winget
et al. 1985) are still present at amplitudes consistent with the previous data — in-
dicating that the new period bands grew in leaving the old unchanged. This view is
lent further support by the analysis of the 1987 data for the phase of the 516 s peak
(a single isolated peak) by Winget and Kepler (1988). The new data are consistent
with the ephemeris of Winget et al., and suggest that the 516 s peak has not only
maintained its amplitude and frequency but its phase as well (including the slow
secular evolutionary change), even as the new bands appeared. These observations
will severely challenge models for the mode-selection mechanism in these stars, and
also possibly provide unprecedented information about their nonlinear behavior.

It is interesting that the new bands appearing in PG1159-035 have periods con-
sistent with Kawaler’s model, providing further evidence that it is correct.

4.b The DBV stars

The pulsating compact stars of intermediate temperature are the DBV stars.
Since the review of Winget (1987), a new DBV star, PG 1456 + 103, has been found
by Grauer et al. (1988b), bringing the known total to 5. Studies of the temperature
range of these stars indicate that all the variables fall into a very narrow range near
the highest temperatures of the DB stars. The exact values of this temperature range
remain somewhat uncertain due to difficulties in reconciling optical and IUE tempera-
ture estimates (cf. Liebert et al. 1986). The IUE results (Liebert et al. 1986) imply a
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blue edge of 28,000 K + 2,000 K, and a red edge of 24,000 = 2,000 K. However,
if the optical temperature scale is adopted the blue edge may be up to 3,500 degrees
cooler, and the red edge about 2,000 K cooler.

The work of Liebert et al. serves to define an empirical instability strip, and
suggests that most or all of the stars in the temperature strip pulsate and those out-
side do not. Indeed, Grauer et al. selected PG 1456 + 103 as a candidate because its
temperature lays between known variables on the IUE temperature scale of Liebert
et al. (1986). This suggests that similar to the DAV stars the pulsations are strictly
an evolutionary effect, and that the DBV stars are otherwise normal DB stars. These
conclusions must be regarded as tentative however, because the sample of stars, vari-
able and nonvariable, upon which they are based is perilously small.

’ Only the light curve of PG1351+489 can be considered resolved, and its sim-
plicity and similarity to some DAYV light curves suggest that it may be a special case
(cf. Winget 1987). Like the DAV stars G191-16, and GD 154, the light curve of
PG1351+489 is very nonlinear in appearance. All three stars are dominated by a
single frequency and its harmonics, with additional power at 3/2 the frequency of the
main peak. The striking similarity of objects in two different classes remains unex-
plained, and probably must await nonlinear calculations.

Attempts to resolve the light curve of GD 358 by Hill (1987) succeeded in de-
monstrating, surprisingly, that the pattern of sets of five regularly spaced modes is
not stable. The spacing appears to change, and on occasion the star appears to be
nearly a mono-periodic pulsator. Hill points out that this sort of behavior casts se-
rious doubt on the rotational splitting explanation for the equally spaced modes, and
also indicates that the pulsations are not stable, since beating is not a plausible ex-
planation for the dramatic changes in the character of the light curve.

4.c The DAV or ZZ Ceti stars

Rotational splitting still seems to be the explanation of choice for at least one
of the coolest class of compact pulsators, the DAV stars. The work of O’Donoghue
and Warner (1987) on L19-2, has demonstrated that rotational splitting is very success-
ful in explaining not only the generally equally-spaced structure of the power spec-
trum, but also that the slight deviations from equal spacing can be accounted for by
the next highest order terms due to rotational splitting.

O’Donoghue and Warner are also monitoring the phase of the pulsations in
this star attempting to measure a rate of period change in this star. The same is
being done for R548 (Tomaney 1987), and for G117-B15A (Kepler et al. 1987). Cur-
rently, the limits on all three stars are rapidly approaching the values expected from
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theoretical evolutionary calculations (see Table 3, and Wood and Winget 1988), and
the best limit comes from G117-B15A: |dP/dt|s7.7x1()'15, at the 68% confidence
level.

Observations of PG2303 +243 by Vauclair et al. (1987), indicate that it is the
20th DAV, and the only new one discovered since the review of Winget (1987). New
variables may be found at a somewhat higher rate in the future, however, after the
work of Fontaine et al. (1985). They showed that the well defined temperature in-
stability strip for the DAV stars based on G-R colors can be almost as sharply de-
fined using the much more readily available Strémgren colors. This result should
increase the ease of identification of candidate stars.

Our discussion of the pulsating white dwarfs is not complete without noting
that there may also be a class of hot DAV’s, in addition to the ZZ Ceti stars, with
surface temperatures similar to the DBV stars, and driving provided by He partial
ionization at the top of the He-layer (cf. Winget and Fontaine 1982). Finally it is also
possible that the coolest white dwarf stars may pulsate. Driving may occur from the
k-mechanism operating due to the large observed surface opacities — or if they are
cool enough that the crystallization boundary is close to the surface, driving may re-
sult from the difference in heat capacities across the crystal/fluid transition region.
The prospect of observing oscillations in the oldest white dwarfs, and thereby meas-
uring their ages and probing the physics of crystallization, makes the search for cool
pulsating white dwarfs a very high priority observational task.

Before closing this review, there are several points I would like to stress. We
have a very good basic understanding of white dwarf stars and their pulsations. The
field has matured to the point that we can begin to consider the prospect of seis-
mological investigations of individual pulsators: we can measure pulsation frequencies
to better than a part in 10°, and we can actually measure evolutionary timescales in
these stars. On the other hand, there are glaring gaps in our understanding which
we will need to turn our attention in to the future: we still don’t know why the hot
stars pulsate; we don’t have any real handle on the interaction of pulsations with
convection, or how this affects the driving, or the mode selection; in general we have
no real understanding of any nonlinear phenomena in these stars, in spite of the evi-
dence of its importance.
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ZZ CETI MODE TRAPPING REVISITED

M. A. Wood and D. E. Winget
The University of Texas at Austin and McDonald Observatory, USA

Abstract

We discuss the effects of compositional stratification on the evolu-
tion of the oscillation spectrum of a representative model sequence evolv-
ing through the ZZ Ceti instability strip. We find that the stratification
has a dramatic effect on the period spacing, although the effect on the
time-rate-of-change of the periods is P/(dP/dt) minimal - roughly equal
for all. Thus the transformation of observed rates of period change into
evolutionary timescales is straightforward: observed rates of period change
provide direct calibration of theoretical white dwarf evolutionary calcula-
tions.

1.Introduction

All the DA white dwarf between the effective temperatures of 13,000 K and
11,000 K vary photometrically on timescales of 100-1000 s. The objects are multipe-
riodic, and in the objects whose period spectra have been resolved, the QO (=1/|P))
of the component periods is = 10", Warner and Robinson (1972) demonstrated these
periods are consistent with the periods expected for high radial-order non-radial g-
mode oscillations. For a more complete discussion of the properties of the ZZ Ceti
stars, see the review by Winget (this volume, and references therein).

Although ZZ Ceti stars are among the most complicated pulsators observed,
the observed period spectra are sparse when compared with the rich theoretical pe-
riod spectra. The asymptotic expression for the spacing of the modes in a non-rotat-
ing model is:

p2 o AT AL D/ 4 K
T NZ O+ 1)/r2

where N? is the Brunt-Viisili frequency. Note that for fixed /; and K2 » I(1+ 1)/r2,
modes of consecutive k should be roughly equally spaced in period. For homogeneous
models, this is indeed what we find for k>4. When Winget, Van Horn and Hansen
(1981) included H and He layers in their models, however, the oscillation spectrum
changed drastically — the periods of the modes were no longer equally spaced in
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k. Further, certain modes resonated with the H and/or He layer thicknesses, and had
kinetic energies orders of magnitude lower than adjacent modes. These low kinetic
energies imply large growth rates, which suggests that these resonant (or "trapped")
modes may be the first to saturate the driving mechanism.

The purpose of these calculations is to extend the investigation of the effects
of compositional stratification to the time-rate-of-change of the oscillation spectrum.
Because the rate of period change of a given period is a function of the evolution-
ary timescale in the region of period formation, we can in principle merge our ob-
servations with our theoretical results to form a coherent seismological picture of the
interiors of these stars. Because these stars are relatively simple, there is hope that
this in fact may eventually be possible. As a first step towards this goal, we report
the results of detailed calculations of the time evolution of the period spectrum of
a representative ZZ Ceti model sequence, focusing on the effects of the composi-
tional stratification.

2. The Models

We generated the evolutionary models with a modified version of the pure-
carbon-white-dwarf evolution code described in Lamb and Van Horn (1975). In the
modified code, H and He layers were included in the envelope as described by
Winget, Van Horn and Hansen (1981). The composition-transition zones were ideal-
ized as discontinuities even though they are expected to be finite in extent because
(i) the composition transitions can be handled in a physically-self-consistent manner
in both the evolution and pulsation calculations, and (ii) as a good limiting case, the
behavior should be qualitatively similar to that expected from the full solution in-
cluding diffusive equilibrium. For example, in an evolutionary, diffusive-equilibrium
model reported by Winget et al. (1982), the H layer (M1-|/M*=10'm) spans 17 pres-
sure scale heights while the H/He transition layer spans only 3. Because the transi-
tion zones between regions of different composition are much thinner than the layers
themselves, the condition of resonance should be relatively independent of the detailed
structure of the transition zone until the mode wavelength is comparable to the tran-
sition zone thickness. This does not occur until beyond k =20. )

The He layer mass is constrained to be 10'32Mue/M*2 10°* by the carbon pol-
lution problem (Pelletier et al. 1986), and the H layer is only loosely constrained
to be 10'82MH/M*2 1012 (see Winget et al. 1982). The sequence we evolved con-
sisted of models of 0.6 M@, whose carbon cores were surrounded by helium layers
of mass Mpe/M,=10" and hydrogen layers of mass My/M, = 10°. We evolved 26
models covering the effective temperature range 13,000 K= Tefr=11,000 K.
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The pulsation calculations were all carried out in the quasi-adiabatic Cowling
approximation. We report the results for /=2, k=1, 16 in this preliminary study.

3. Discussion of Results

As a white dwarf star cools, the Brunt-Viisiild frequency decreases, squeezing
the eigenfunctions out into the envelope, and so forcing the eigenfrequencies down.
It is generally true that because modes of differing k sample slightly different re-
gions in the star with correspondingly different evolutionary timescales, we expect
each mode to have a different rate of period change. If we plot the behavior of the
periods of all of the modes k versus decreasing effective temperature across the in-
stability strip, we expect to see bumping and avoided crossings of the sort described
by Aizenman, Smeyers and Weigert (1977). Briefly, when a mode bumps another mode,
it displaces the bumped mode to another frequency, and settles at approximately the
frequency of the displaced mode. Further, the eigenfunctions exchange some charac-
teristics.

Figure 1 shows the results of our calculations. There are several features of
this figure that are worth mention. Perhaps the first feature apparent to the eye is
the presence of small kinks in P(k Tef). These kinks are relatively larger for larger
k, and appear to manifest themselves in several modes of differing k simultaneously.
We looked into this problem, and found that either our envelope C equation of state
table is too coarse, or our interpolation algorithm is less than ideal, or the evolu-
tion code was having trouble stitching together the core and envelope (or some com-
bination of the three). In short, these kinks reflect the numerical noise in our
calculations. Because the troubles are in the outer 0.1% of the star (by mass), it is
not surprising that higher harmonics are more strongly affected. Happily, previous
calculations of a sequence whose noise level was more than 10 times higher than
here lead to essentially the same conclusions — which is to say that our results are
insensitive to the numerical noise. .

The second feature of note in the figure is the evidence for bumping and
avoided crossings. A particularly clean example of this is the behavior displayed by
modes k=5 and 6. To understand the exchange, it also helps to look at Figure 2,
which shows the logs of the kinetic energies of the modes for all k up to at least
15, for all the models. At the hot end of the sequence (top of the figure), k=6 is
the mode whose kinetic energy occupies the local minimum. As the models evolve,
the kinetic energies and periods of the modes k=5 and 6 pull together. Between
models 22 and 23, the two trade relative kinetic energies, and as the models con-
tinue to evolve, the k =5 mode retains its new status as the trapped mode.
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Fig. 1. Plot of the evolution of the oscillation spectrum from our model calcu-
lations. Note that the slopes of the lines increase as k increases (this is most
easily seen by viewing the plot near-edge-on).

Another local minimum in Figure 2 occurs near 600 s, modes k=12 to 15. Al-
though the noise in the calculations makes the analysis of this period group less
straightforward, the basic behavior is unchanged. At the hot end of the sequence,
modes k=13 and 14 are trapped. As the model cools through the instability strip,
the k=12 mode pulls closer. Before leaving the instability strip, the k=12 mode
takes over as occupant of the local minimum.

The final feature we draw your attention to in Figure 1 is the increase in the
slopes of the lines P(k, Tefr) for increasing k. Although P increases with k, the measured
quantity is in fact P/P, which for these models varies by less than a factor of two
with a centroid of ~7x10'%.

What do these results say about the observations? They say that within the in-
stability strip the change in the trapped modes may have some observable con-
sequences, although nonlinear calculations are required to confirm this. For example,
the behavior of modes k=5 and 6 suggests the following picture. A star may enter
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Fig. 2. Log of the kinetic energies of all the models. The top curve is on the
scale at the left, and the others have been offset for clarity of presentation. At
the hot end (top) of the sequence, the mode k=6 is the mode with the lowest
local kinetic energy. As the models evolve, modes k=5 and 6 gradually pull
together in period and smoothly exchange relative kinetic energies. As they cool

out of the Instability strip, the mode k=S5 is the mode with the lowest local
kinetic energy.

the instability strip pulsating in a mode of given k, and as the star evolves, another
mode may bump the first — in doing so its physical properties will approach those
of the first. When the physical properties of two- modes become the same or nearly
so, they should become indistinguishable to the driving mechanism, and both may be
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driven simultaneously. This is consistent with the observations, where we commonly
observe closely-spaced modes beating with each other.

Rotational lifting of the m degeneracy and accidental near-degeneracy between
modes of different / can also result in closely-spaced periods. The question then
arises, is there some way that we can differentiate between these processes obser-
vationally? The nature of the avoided crossings suggests that they might be observed
as doublets in the period spectrum, possibly accompanied by other modes simul-
taneously. The beat period for the k=5 and 6 modes in our model 23 is 4.4 hours,
but in general we expect that the spacing of these doublets may be sensitive to the
surface layer masses. Rotational splitting, on the other hand, should leave the same
signature on all modes in the star equally, and so should in principle be distinct.
Unfortunately, allowing for accidental near-degeneracies of modes of different / com-
plicates the picture enormously. Near degeneracy of two modes of different / would
look no different than an avoided-crossing doublet, and the mixing of modes of differ-
ent [ could thoroughly obscure the signature of rotational splitting.

The most important conclusion from these preliminary calculations is that while
compositional stratification has a dramatic effect on the oscillation spectrum, the ef-
fect on the time-rate-of change is minimal, PP roughly equal for all k; the transfor-
mation of observed rates of period change into evolutionary timescales is straightforward.
Thus, observations of secular period changes in pulsating white dwarf stars will pro-
vide a direct calibration of theoretical white dwarf evolutionary calculations.

This work was supported by NASA Grant NAG87-044, by NSF grants AST
8552457 and AST 8600507, and by McDonald Observatory of the University of Texas.
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SECULAR EVOLUTION OF THE 516 s PERIOD
IN THE PRESENCE OF NEW MODES IN PG 1159-035

DIk Winget*
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Instituto de Fisica Universidade Federal do Rio Grande do Sul, Brazil

Abstract

We report the analysis of the time rate of change of the 516 s pe-
riod in the DOV star PG 1159-035. At least 5 new period bands have
been detected in 1987, adding to the 8 bands previously present in the
extensive archival data base on the star. Our analysis of the phase of the
516 s period in the 1987 data is consistent with no change relative to the

reviously reported ephemeris. Thus the period change due to secular evo-
ution appears to be unaffected by the appearance of the new frequencies.
This result provides very strong constraints on any model for the origin
of the new frequencies.

1. The Star and the Old Data

McGraw's star, PG 1159-035, is a multi-periodic variable DO white dwarf and
the proto-type of the class of DOV stars. The multi-periodic variations are thought
to be the result of nonradial g-mode pulsations. At the time of the initial discovery
of variability in the object, McGraw et al. (1979) pointed out that its location in the
upper left-hand corner of the H-R diagram implied that, if the pulsations were stable,
secular evolutionary period changes would be measurable with an observational base-
line of only a few years. :

As a result of this, archival data on this object was accumulated at the Uni-
versity of Texas and the University of Cape Town over the period from 1979-1984.
The analysis of this data demonstrated that the star had eight separate groups of pe-
riods (or bands) which seemed to be stable, but only one period, at 516 s, which
was an isolated peak suitable for secular stability analysis. With the 1984 data, there

* Alfred P. Sloan Research Fellow
** CNPq-Brazil Research Fellow
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was sufficient data to demonstrate an unambiguous secular change in the 516 s mode
(Winget et al. 1985). The rate of change of this period was completely consistent with
the evolutionary timescale expected from theoretical evolutionary calculations.

2. The New Data and the New Results

Barstow et al. (1986), using EXOSAT to observe McGraw’s star, demonstrated
that the largest amplitude periods present in the optical were also present in the
soft x-ray, although with an amplitude an order of magnitude larger than the opti-
cal. In addition, however, they indicated the presence of a new peak at about 524s,
not present in the archival data, although there was some evidence of a correspond-
ing period in the optical data taken in 1985. There was not enough data obtained
in 1985 to obtain a meaningful phase for the 516 s period, especially with the com-
plic’ating presence of a nearby period at 524 s.

In 1987 we obtained 49 hrs of high-speed optical photometry which unambigu-
ously demonstrated not only the existence of the new peak at 525 s, but at least
four additional bands, or sets of peaks, not present in the 1979-1985 data. The amount
of data in the 1979-1985 data set, as well as the fact that a significant fraction of it
was nearly continuous data from multiple longitudes, precludes the possibility that
the new peaks were present at the time but did not appear because of an accident
of the phase of the beat of the different frequencies in the new bands. Further, there
is no measureable change in the amplitudes of the modes which were present pre-
viously, indicating that the new frequencies are not the result of some transfer of
power between the old modes (mode-switching) (Koupelis and Winget 1987).

We have examined the new data for the phase of the 516 s to compare with
the ephemeris of Winget et al. (1985). As in our 1985 analysis we have computed
dP/dt using two independent techniques: fitting a parabola to the (O-C) diagram,
and a direct nonlinear least squares fit to the entire data set of a sine curve incor-
porating a term linear in dw/dt. These techniques are described in Winget et al. (1985),
and in even greater detail in Kepler et al. (1988).

Here we define our dP/dt using the dP/dt term arising in the 2nd order Tay-
lor series expansion of the usual (O-C) relation — resulting in a difference of ex-
actly a factor of two from Winget et al. (1985), so those results (and associated errors)
must be multiplied by a factor of two for comparison with.the numbers presented
here. The new definition is consistent with treating the phase as w integrated over
the time of observation, and inserting a Taylor series expansion of w in the integral
expression. Previously, we treated the phase as given by o times ¢, so the factor of
two comes about because of the integration of the dw/dt term in the new definition.
These two methods are examined in some detail in Kepler et al. (1988), and although
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the choice of definition is formally arbitrary (within multiplicative constants of order
unity) as long as it is applied consistently — the conclusion is that the definition
adopted here is the one which is physically self-consistent for use in comparison with
theoretical calculations of dP/dt.

Using both the (O-C) technique and the nonlinear least squares technique, the
results for the 1979-1984 data set, which we have completely re-analyzed, are

dP/dt(O-C) = (-2.36+0.4)x10™"",
. dP/dt(nls) = (-2.44+0.06)x10""",

where we note that the formal error quoted for the nonlinear least squares (nls)
value is probably an underestimate of the true error. These results are completely
self-consistent and consistent with those found previously (Winget et al. 1985). Both
"methods give the same nominal period, 516.025s, and ephemeris time of zero,
Eo =244,5346.873583 HIDD +1.9s.

The results for the 1979-1987 data set, using the two techniques are:

dP/dt(O-C) = (-2.32 +0.08)x 10",
dP/dt(nls) = (-2.35 £ 0.02)x 10",

Again, both methods are completely self-consistent, and give the same nominal
period, 516.025s, and ephemeris time of zero, Eo=244,5346.873583 H/IDD +1.9s.
Also, and perhaps surprisingly in light of the presence of the new frequencies, the
new values are completely consistent with the values from the 1979-1984 data set
alone. {

Thus our conclusion is that the secular change in the 516s period of PG 1159-
035 has continued, unaffected by the appearance of the new modes. Whatever hap-
pened to the star that caused the new modes to grow-in, if that is indeed what
happened, was subtle enough not only to leave no measurable effect on the ampli-
tudes and basic frequencies of the original bands, but to leave no measurable effect
on the phase of the 516 s mode either. This will place a severe constraint on any
model for the way in which the new frequencies have arisen.

We ' speculate that what may have happened is that the effective band-pass of
the filter mechanism responsible for the mode selection has gradually broadened al-
lowing more modes to reach observable amplitudes. If the filter mechanism is as-
sociated with compositional stratification leftover from nuclear shell burning, as has
been suggested by Kawaler (1987), then this may be comprehensible. Initially, after
shell burning shuts down, concentration gradient effects will be at work broadening
the composition transition zone and therefore its band-pass. This change would take
place on diffusion timescales, as opposed to evolutionary timescales, thereby helping
to explain how we can observe this over a period of several years. If this is the case
perhaps we will see additional modes appearing in subsequent years. Clearly, we need
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to investigate this idea quantitatively by examining the pulsation properties of evo-
lutionary models incorporating the effects of diffusion (a calculation which can be
done given current techniques). In any case, it will be extremely important to con-
tinue to monitor this star in the future. ‘

This work was supported in part by NSF grants AST-8600507, and AST-8552457,
and by McDonald Observatory of the University of Texas.
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THE STRUCTURE OF STELLAR QUANTUM CHAOS

J. Perdang
Institute of Astronomy, Cambridge, UK
and
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Abstract

We analyse the distribution of the acoustic frequencies of stars whose
geometrical equilibrium structure is smoothly deformed. We show both by
asymptotic analysis and by numerical exPerimems that the acoustic spec-
trum exhibits ’quantum chaotic’ ranges of frequencies. Within these ranges
the individual frequency levels shifted under the effect of the geometrical
distortion are distributed irregularly around the frequency levels of the
nonperturbed star of spherical symmetry. We study analytically how and
where these quantum chaotic ranges are likely to {)e generated. We also
briefly comment on the main differences between acoustic ’quantum chaos’
and the formally similar problem of spectral, or ’quantum chaos’ as en-
countered in quantum mechanical systems.

1.Introduction

According to the now canonical interpretation, the solar 5-minute oscillations
are linear acoustic normal modes of a spherically symmetric hydrostatic equilibrium
model. Perhaps the most persuasive argument in favour of linear modes comes from
the equatorial observations of the solar disk. First carried out by Deubner (1975),
these observations resolved the frequencies v of the surface oscillations with re-
spect to their horizontal wavenumber ki (or the degree /, since kn=(/ +1/2)/Re, Re
radius of the sun); when plotted against the wavenumber kj the observed frequen-
cies match the (asymptotic) theoretical v — ki patterns in a remarkable way, both
for intermediate (/=4-100) and for high degrees (/=100-1000). The interpretation in
terms of linear modes also accounts for the full-disk frequency observations initiated
by Fossat and coworkers (Grec et al. 1983) at the South Pole and continued by satel-
lite observations. These observations are reasonably reproduced by the acoustic
frequencies of low degree (/=0-4) of conventional solar models.

* Permanent Address
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The high precision of the solar frequency measurements has made it clear,
however, that the agreement with the acoustic frequencies of the currently best solar
models is not fully satisfying. The differences between observation and theory are
twofold. In the first place, plots of the observed frequencies vobs(n,l), identified by
their degree / and radial order n, against n and for different values of / show a
global regular pattern which does not fully coincide with the regular pattern traced
out by the families of model frequencies Vmod(n,l). The discrepancy is made quite
obvious in the popular echelle diagrams (¢f. Toomre 1986). In the second place, the
observed frequencies vops(n,/) do not all exactly fall on perfectly smooth v - n
curves as theory predicts. Only when averaged over a range of n values, < Vops(n,l) >,
does the observational curve show a smooth behaviour in n.

It has been claimed that the first difficulty can be overcome by implementing
improved physics in the computation of the solar models (for instance, through a
sophisticated equation of state, ¢f. Ulrich and Rhodes (1984). So far, however, a con-
vincing proof of the relevance of this effect is wanting. The second difficulty, unless
a result of observational noise, is hard to get rid of in the framework of solar model
of high geometric symmetry. This latter point will be substantiated in the present
paper.

Our work was originally motivated by the interpretation of the solar frequency
discrepancies. It became obvious, however, as soon as the first analytical and numeri-
cal results became available, that the most exciting potential application of the par-
ticular theoretical framework we have concentrated on, namely the role of smooth
-large scale geometric deformations of a star, lies in the interpretation of the acoustic
frequency spectrum of strongly deformed stars (close binaries, rapid rotators). Al-
though at the moment observational information on an extended range of acoustic
frequencies of such objects is still lacking, the rapid expansion of the relevant tech-
nology is indicative that this information will become available in the near future.

The following theoretical questions have been investigated. ;

(a) A precise definition of the phenomenon of quantum regularity of a spec-
trum of frequencies is given, using the formalism of nonstandard analysis; by the
same token quantum chaos is defined as a phenomenon complementary to regular-
ity. Our definitions apply to the very large acoustic frequency eigenvalues only. In
our view the asymptotic part of the spectrum alone — a concept we shall also pre-
cisely define in the framework of nonstandard analysis — lends itself to a clear-cut
theoretical treatment, since generically it is not contaminated by the inherent physi-
cal complexities of the full realistic stellar wave equation. Besides the neatness of a
mathematically precise characterisation of quantum chaos, our definition also has the
advantage of leading to a practical test of regularity or chaos of a fragment of the
acoustic spectrum. We note in passing a duality.between quantum regularity and
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chaos of the oscillation eigenstates on the one hand, and the ordered crystal-like
structure and the disordered liquid structure of matter on the other.

(b) We develop a systematic and general procedure for the actual computation
of the frequencies of stars lacking spherical symmetry. Our procedure makes use of
a mapping of the nonspherical stellar configuration in the actual physical space onto
a spherical configuration in a fictitious space. This trick enables us to use the (complete
set of) eigenfunctions of the spherical configuration as a basis for the expansion of
the eigenfunctions of the deformed star. Thereby the virtually intractable partial differ-
ential eigenvalue problem is reduced to a conventional algebraic eigenvalue problem.

(¢) We introduce an ideal many-parameter family of nonspherical stellar con-
figurations whose specific geometry is characterised by a collection of free parame-
ters { Ai}, and whose physics reduces to a bare minimum. The parameters are chosen
such that for { Aj=0}, the model becomes spherically symmetric. We have theoreti-
cal reasons to believe that just like the idealised Heisenberg or Ising models of statis-
tical physics — which in spite of their rudimentary nature, reproduce adequately the
behaviour of the most significant physical factors in the vicinity of the phase transi-
tions — the family of models proposed here is appropriate to exhibit the main
structural features of generic asymptotic acoustic spectra of deformed stars. We also
believe that it is adequate to characterise the transition from regularity to chaos in
the spectrum, although this point has not been investigated directly here.

A few preliminary numerical results on the behaviour of the spectrum under
changes of the parameters { Ai} are presented. Our model makes it clear that the
chaotic spectral ranges arise as the result of a coupling of almost radial (/n<1)
with nonradial (//n=1) basis eigenfunctions, the natural choice for the latter being
the set of eigenfunctions of the spherically symmetric model. In more physical terms,
quantum chaos in a deformed star arises out of an avoided mode crossing —or res-
onance — between lower-/ modes and higher-/ modes of the nondeformed, spheri-
cally symmetric reference equilibrium configuration.

Barring the abstract group-theoretical conclusions on the structure of the oscil-
lation modes of stars of arbitrary symmetry (Perdang 1968), the results presented
here are, to the best of my knowledge, the only general results so far available on
the acoustic frequency spectra of nonspherical stars.

I should point out at this stage that large scale deformations away from the
spherically symmetric equilibrium may not be the most relevant symmetry breaking
factors leading to observationally detectable effects in the structure of the acoustic
spectrum. As stressed elsewhere (Perdang 1986), small scale deformations — break-
ing the original symmetry only locally, while globally, and on a large scale the spheri-
cal symmetry of the star survives — are likely to affect the asymptotic spectrum and
to generate quantum chaos as well. The precise way how this is achieved remains
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to be investigated. We mention here only that our mapping procedure breaks down
for local deformations, as a result of a violation of the one-to-one correspondence
between the old and new variables. This may suggest a basic change in the struc-
ture of the spectrum. Local geometric distortions, unavoidable for instance in con-
vective zones, are presumably more relevant than global deformations in modifying
the structure of the asymptotic acoustic frequencies of ’simple’ stars, and in partic-
ular of the sun. Alternatively, even a globally spherical symmetry may not be a cor-
rect picture for the majority .of 'simple’ stars. It could well be that underneath a
roughly spherical surface symmetry of the star conceals a complicated 3-dimensional
sound speed pattern. In fact, I just wish to remind the reader that geophysical to-
mography has recently revealed — against common sense expectation — that the
terrestrial sound speeds in the earth mantle show systematic changes of an ampli-
tude of as much as 10% over horizontal scales of 1000 km, even though the geometri-
cal surface of the earth is spherical to a remarkable degree.

Finally, T should like to sound a warning. The actually observed solar oscilla-
tions, even though interpreted as lineur and essentially adiabatic oscillations, are in-
trinsically  nonlinear dissipative  phenomena. Indeed, the very occurrence of an
oscillation requires an excitation, i.e. a dissipative mechanism; and any physical exci-
tation of the modes necessarily involves nonlinear effects, otherwise the amplitudes
would grow indefinitely. The stochastic excitation mechanism, as advocated by various
authors (cf. Christensen-Dalsgaard 1987), is mergly a 'model of ignorance’ in which
all nonlinear effects (modé-couplings, dissipative interactions) are mimicked by an
unknown ’stochastic’ forcing term. The resulting set of Langevin equations (or their
discrete-time counterparts, the autoregressive schemes, and in particular the Yule
scheme) define then by construction an entirely unpredictable time signal. In the
context of such a model the solar oscillations are then strongly chaotic (in the sense
of algorithmic complexity theory). In fact, this brand of chaos is not just determinis-
tic chaos, the variety arising in nonlinear systems of a few effective degrees of free-
dom, as a result of instabilities in their deterministic equations of evolution; it is
what should conveniently be called indeterministic chaos, namely an unpredictability
in the oscillations due to the nondeterministic, probabilistic character of the evolu-
tion equation itself. We have commented elsewhere on the connection of the oscil-
lation equations with autoregressive schemes, and on the definition of chaos in terms
of algorithmic complexity (Perdang 1985).

The concept of quantum chaos of the linear oscillation spectrum as understood
here, in contrast to the above varieties of deterministic and indeterministic chaos,
does not relate to the time behaviour of the oscillations. It characterises the struc-
ture of the spectrum of linear eigenfrequencies and the distribution of the spacings
of the frequency levels. In principle, the spectrum of linear acoustic eigenfrequen-
cies is rigorously accessible observationally, provided that the framework of the stoch-
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astic excitation mechanism is adequate (cf. Christensen-Dalsgaard 1987). However, in
the framework of a refined excitation theory we have no guarantee that this conclu-
sion continues to hold. The peaks in the power spectrum are indeed likely to be
displaced by the nonlinearities. Therefore, the analysis of an observational spectrum
of stellar frequencies, interpreted as linear eigenfrequencies, always involves an ele-
ment of uncertainty. The observed spectrum may well be distorted by nonlinear ef-
fects. What we interpret as a geometric deformation — or, for that matter, as the
manifestation of complicated new physical mechanism — may in reality just be a
nonlinear component.

2. Geometric acoustics

The formal correspondence between the equations describing the linear adia-
batic acoustic stellar oscillations and the quantum mechanical Schrodinger eigenvalue
equation entitles us to carry over general results from one of these fields to the
other virtually verbatim. In the early seventies, the Schrodinger eigenvalue problem
was shown to give rise, under certain well defined conditions, to a phenomenon later
referred to as 'quantum chaos’ (Percival 1973, 1974). A precise definition of quan-
tum chaos was not formulated; instead, it was characterised in terms of the qualita-
tive properties of the spectrum (irregular spacings of the eigenvalues) and of the
eigenfunctions (irregular pattern of the nodal lines, etc.; cf. Percival 1973, 1974; Berry
1977, 1983; Zaslavsky 1981).

We have made use of the above formal correspondence to point out the exist-
ence of a stellar counterpart of the phenomenon of ’quantum chaos’ and its com-
panion phenomenon, ’quantum regularity’, in the spectrum of the adiabatic oscillation
frequencies (Perdang 1984, 1986).

~ Consider a general Schrodinger eigenvalue problem

H(q,p) ¥(@) = E (@) , (2.1)
defined in an f-dimensional configuration space of coordinates
q=(@q,q..,9) , (22)
the linear partial differential operator H(q,p) is a function of the coordinates q as
well as of the array of space derivatives
p = isloq = (id/oqy, i8/aqa, ..., i0/aqf) (2:3)

the function y(q) defined over the configuration space, is the eigenfunction associated
with the energy eigenvalue E. (We have assumed that a system of units is chosen
in which Planck’s normalised constant is 1).
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The classical limit of equation (2.1) is generated by the substitution of an or-
dinary f-dimensional vector to the vector operator (2.3),

P PLsP iy PHRoy, (2.4)
where the components pj, j=1, 2, ..., f are interpreted as the classical generalised

momenta. Under the substitution (2.4) the original partial differential equation col-
lapses into a scalar equation

H(q,p) = E . (2.5)

In other words, the energy state E now becomes a function of the generalised
coordinates and momenta. The function H(q,p) is the classical Hamiltonian. If q(t),
p(t) is a solution of the Hamiltonian equations -

d/dt q = o/op H(q,p) and d/dt p = -d/aq H(q,p) , 2.6)

of initial conditions q(0) =qo, p(0)=po, then the orbit [q(t),p(1)] in the 2f-dimen-
sional phase space is carried by the 2f-1 dimensional subspace specified by
H(q(t),p(1)) = H(qo,po) =E.

Consider on the other hand the asymptotic equation of the stellar acoustic oscil-
lations. By ’asymptotic’ we mean here the limiting form of the acoustic eigenvalue
problem for arbitrarily large frequencies, keeping the leading order terms only. A
precise definition will be postponed to Section 6. In this limit the equation reduces
to the conventional standing wave equation

()(r,k)z W(r) = (uzlb(r) . (2.7)

In this expression r is the f-dimensional position vector of éomponents X, j=1,
2, ..., f in the configuration space; f may be equal 1, 2 or 3, depending on whether
we consider 1-dimensional (for instance radial waves in a spherically symmetric star),
2-dimensional (for instance waves in the presence of a rotational symmetry), or
genuine 3-dimensional wave propagation. n(r,k)2 is a linear partial differential oper-

ator depending on the position vector and on the array of differential operators
k = (ig/axy, i9/ax2, ..., id/axf) : (2.8)

explicitly

ark)’ = [ki%@? 4 (29)
c(r) being the adiabatic sound speed at position r in the stur.lThe eigenfunction y(r),
defined over the accessible configuration space (the volume of the star).2 is physically
interpreted as the pressure perturbation; the associated eigenvalue is «°, » being an
oscillation eigenfrequency. In principle, the partial differential equation (2.7) is to be
supplemented by the surface boundary condition. The surface singularity in the differ-

ential system, in the case of a sound velocity vanishing at the surface, substitutes the
regularity requirement for the eigenfunction to an extra boundary condition.
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The manifest formal analogy between the acoustic mode equation (2.7) and the
Schrodinger equation (2.1) suggests that we can associate a ’classical limit’ with the
acoustic equation, by the formal substitution

k — (ki1, k2, ..., k) ; (2.10)

i.e. k is now regarded as an f-dimensional vector. We are then left with an algebraic
equation for the frequencies

ark)? = o* or  +a(rk) = v(rk) = o . (2.11)

The vector k is seen to have the physical interpretation of a wavevector. Again,
by analogy with the quantum mechanical problem, we are led to view the function
v(r,k)=+0(r,k) — here a local frequency — as a Hamiltonian depending on the
generalised coordinates r and the generalised momenta k. Associated with this
Hamiltonian we then have ’equations of motion’

d/dt v = a/ok v(r,k) and d/dt k = -d/or v(r,k) : (2.12)

The latter, generated here in a strictly formal way, are seen to have a simple
physical interpretation. They describe the asymptotic approximation of geometric acous-
tics, L.e. the propagation of narrow directed beams of acoustic energy — the acous-
tic rays — in the limit of short wavelengths.

In this brief and unconventional derivation of geometric acoustics we have so
far not insisted on the basic differences which arise between our oscillation eigen-
value problem and Schridinger eigenvalue problem. I mention here in the first place
that the selection of =Q(rk) as the relevant Hamiltonian v(r,k) is not unambigu-
ously imposed. We could as well have chosen for instance a(r,k)? as the classical
Hamiltonian. The formal lack of uniqueness of the assignment of a Hamiltonian mir-
rors a similar lack of uniqueness in the ray equations as derived by the more con-
ventional procedures (c¢f. Eckart 1960, Jeffrey and Taniuti 1964, Tolstoy 1973).
Moreover, with our choice, which has the advantage of having a direct physical in-
terpretation as the local acoustic frequency, the Hamiltonian of geometric acoustics
acquires a peculiar mathematical feature not encountered in mechanics. We are deal-
ing with a multivalued function of r and k , since both +q(r,k) and -Q(r,k) simul-
taneously define our Hamiltonian v(r,k) (eq. (2.11)). These two sheets are seen to
join at the surface of the star where the sound speed vanishes. The sheet to be used
in the ray equations is ruled by a continuity requirement. A ray initially described
by the sheet +Q(rk) will be moving towards the stellar surface, it bounces off the
surface following the ray equations containing sheet —(r,k) of the Hamiltonian. An
alternation of the sheets of the Hamiltonian occurs at every encounter of the ray
with the surface. The double branch structure of the Hamiltonian thus handles directly
the problem of the surface reflection of the rays without any need for an externally
imposed reflection condition.
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The fact that our Hamiltonian is double-valued, implies that each point of the
(r,)k)-space supports two orbits (namely one generated by the branch +Q(r,k) and
the other by the branch -q(r,k)) instead of a single one in the case of conventional
Hamiltonian mechanics. This multi-valuedness prevents us from directly applying the
results of classical mechanics to our formulation of geometric acoustics. We manage
to get rid of the multi-valuedness by simple geometrical trick used in the discussion
of billiards and which consists essentially in changing the topology of the (rk)-space
(Amold 1978). The configuration space of coordinates r, namely the region inside
the star accessible to the rays (topologically an f-dimensional disc Df) will be re-
garded as two-sheeted; these two sheets are then glued together at the boundary of
the region (the surface of the star). As is obvious from Figure 1, the combined two-
sheeted region acquires therefore the topology of an f-dimensional sphere s’ An ac-
tual position in the star, of coordinates r, is regarded as lying either on the "upper’
sheet, in which case we denote its coordinates by r+, and the associated sheet of
Hamiltonian v(r,k) is + Q(r,k); or it is viewed as lying on the ’lower’ sheet, in which
case we denote the coordinates by r-, and the associated sheet of the Hamiltonian
is —(r,k).

r+
r
e B DI A B 81
A ri B
ﬂl r— B!
=

Fig. 1. The physical configuration space and the two-sheeted extended configu-
ration space of the ray propagation problem if f=1 and 2 dimensions; for f=1
the combined upper and lower, sheets, with A identified with A’, and B iden-
tified with B’, define a circle S for f=2 the combined upper and lower sheets
with boundaries identified, define the surface of the sphere, S°.
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Fig. 2. Solution of an inte rahle system of ray equations displayed in the angle-
action variables @, J, for F ; the ’square’ ABCD has its opposite sides iden-
tified, AB=DC and BC= AD By pasting successively BC and AD , and then
AB and DC together, we pr()duce a cylindrical surface and a torus; a ray then
winds around this torus.

The a priori accessible space of wavevector k is the f-dimensional Euclidean
space E'. More precisely, for the typical sound velocity profile we shall adopt here
(cf. eq. (5.4)), it transpires from the Hamiltonian equations of motion that the
wavevector takes on infinite values at the surface of the star; therefore the actual
wavevector space is E! u{=}, where we denote by « the point at infinity. This
space has again the same topology as the f-sphere, s’ With our extension of the
configuration space (of topology S'), and the topological specification of the wavevec-
tor space (also S) we ()btdm a conventional phase space (r+,k), henceforth denoted
by T, of topology s" x s’ Our Hamiltonian system is specified by a conventional
single-valued vector field (the RHS of eqgs. (2.12)) defined over the phase space I
We shall refer to the two-sheeted configuration space as the ’extended configuration
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space’, while the original r-coordinate space will be referred to as the ’physical con-
figuration space’.

The occurrence of reflections of the ray on the surface of the star on the one
hand, and of continuous deviation of the ray path in the interior of the star on the
other hand, indicates that stellar acoustic ray propagation (in the above defined
asymptotic regime) inherits the properties of two simple classes of classical mechani-
cal systems whose quantal counterparts have been investigated in some detail: Inside
the star, the ray is essentially described by an analytic Hamiltonian. Close to the sur-
face, the ray behaviour is essentially that of a billiard; (for a recent discussion of the
properties of billiards see Wojtkowski 1986). These observations will enable us to un-
derstand the structural ray patterns over the volume of the star.

The main conclusion of this section is that we can associate whith the problem
of (asymptotic) linear adiabatic acoustic oscillations of a star a conventional Hamil-
tonian dynamical system (eqs. (2.11)). It is now well known that the nonlinear character
of a Hamiltonian system implies that generically the phase space I of the dynami-
cal system is partitioned into two subregions R and K with the following properties.
Initial conditions ro,ko € R produce regular orbits in the phase space; initial condi-
tions ro,ko € K produce chaotic orbits in the phase space, chaos being understood
in the conventional sense of deterministic chaos. Since a frequency eigenvalue o in
the "classical limit" characterises a collection of orbits, namely all those orbits in the
phase space with same value of the Hamiltonian, v(r,k)=uw, it should not be sur-
prising that in the acoustic eigenvalue problem the class of eigenfrequencies related
to regular families of orbits and the class related to chaotic orbits display basic differ-
ences.

3. Hamiltonian ray dynamics. The integrable case

A single-valued Hamiltonian is globally integrable if it admits of f independent
contants of motion, i.e. f independent functions which are constant along an orbit in
the phase space

J(l‘,k) = J(rkaO) = JO ) (31)

d.=1h, J2 «, ) i

Jo is here a constant f-dimensional vector; ro,ko are the initial position and momen-
tum (wavevector) of the orbit generated by the dynamical éystem (2.12) (cf. Arnold
1978 for the full definition of integrability). With the above formal extension of the
configuration space, our Hamiltonian v(r,k) is made single-valued in the (r=,k) -
phase space I The conventional definition of integrability is therefore applicable to
our ray system.
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We mention that each individual constant of motion Jj(r,k) =constant, j=1, 2,
... , f confines the motion to a subspace );52"’1 of dimension 2f-1. Accordingly the
collection of the f independent constants of motion defines a region in phase space
which is the intersection of the subspaces );_iH‘ and therefore of dimension f
L’]H n )LzH AXe M ).‘jr"' = g (3.1a)
We now select a collection of f variables ¢ such that the transformation
T r+k [— ¢J (3:2)

be a canonical transformation (for a proof of existence of such a transformation see
Arnold 1978). Under this mapping the Hamiltonian v(r,k) becomes

v(r(¢d), k(o)) = F(o.d) . (3.3)
and therefore we have the following ray equations
d/dt ¢ = /6] F(¢,J) and d/dt J = -d/o¢ F(e,J) . (3.4)

The variables J being by construction constants of motion, their time derivatives
vanish. This requires the Hamiltonian in the new canonical variables to be inde-
pendent of ¢ or F(¢,J)=F(J). Setting then

w(l) = o) F(J) (3.5)

we can explicitly write down the solution of the ray equations in the new variables

o J
o) = w(l)t + ¢o and J(t) = Jo (3.6)

$o and Jo being the initial conditions.

We shall now introduce a special requirement on the rays:
The rays as referred to the new canonical variables, are bounded in the phase space
r. In other words, for any finite initial condition ¢o, Jo we postulate that there ex-
ists a finite positive constant 4 such that

vt (e = A - 3.7)

the norm being the Euclidean norm. Requirement (3.7), together with the explicit
solution (3.6) implies that the variables ¢ must be cyclic variables, i.e. each com-
ponent ¢j , j=1, 2, ..., f is defined modulo a positive real number mj. Without loss
we can choose the real mj all equal to 2n, so as to identify the variables ¢ as an-
gles. The constants of motion J are then referred to as actions. Each variable &;,
being thus defined over a circle S! the collection of the f angular variables (eq.
(3.6)) is defined over the direct product of f circles

ghpglayno g o e (3.8)
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which is an f-dimensional torus T' (cf. Fig. 2), in the integrable case the region sf

(eq. (3.1a)) acquires the topological structure of a torus.
Let us introduce at this stage the following definition. A system of ordinary
differential equations

didt x = f(x) (3.9)

with x defined in an n-dimensional phase space v, and with R an invariant set in +,
will be said to be simple in R, if a smooth one-to-one transformation exists

T x |-y . (3.10)
such that for any x eR the differential equation reduces to
didty = a , (B0

with a constant; the new variables y are defined mod(b) (with b possibly —).

Conversely equation (3.9) is said to be nonsimple in an invariant set K cy if
no transformation (3.10) exists leading to a differential equation (3.11).

We recall that locally, namely in the neighbourhood of any regular point of the
vector field f(x), the original differential system can always be reduced to the form
(3.11) (cf. Amold 1980). The above definition of simplicity stipulates that the full
orbit (for —= <t< + =) is described by system (3.11).

We see that for a system simple in R, the variables y define an orbit in Rcy
which traces out a deceptively regular pattern, namely straight parallel lines in a 'hy-
percube’ (in which opposite sides are identified); a geometric regularity of this pat-
tern is preserved under the inverse transformation of (3.10), so that in the variables
x the orbit continues to define a regular pattern. Moreover, the projection of this
regular pattern onto any subspace 1V cy cannot destroy the regularity of the pattern.
We conclude therefore that the projection of the orbit into any subspace V' cy pro-
duces a regular pattern in V. Alternatively, for a system which is nonsimple, any
orbit in K, expressed in any set of new variables y we like (eq. (3.10)), keeps by
definition a complicated analytic form. Accordingly, it generates a complicated ir-
regular geometric orbit structure. Generically the projection of such an orbit onto
some subspace V' then remains irregular.

We have shown that if our ray Hamiltonian v(rk) is mtegrable then the rays
lie on an f-dimensional torus T cr. Moreover, as is seen from equation (3.6), our
dynamical system is simple in the sense defined above, everywhere in our phase space
I. The projection of the ray pattern from (r+,k) - space onto the physical configu-
ration space (r) — namely onto the actual volume of the star — then displays a
regular ray pattern. It transpires from this discussion that a/l rays of an integrable
ray problem display a regular pattern in the configuration space r. We shall refer to
these rays as regular rays.
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A further point is of relevance for our purposes. For generic initial conditions,
the set of frequencies w(J) (eq. (3.5)) is typically rationally independent (except
possibly for very special ray systems); this means that for any collection of f in-
tegers n=(ny, n2, ... , n)=0 we have

nwl) =0 . (3.12)

It follows that the ray‘ carrying torus ;o specified by the set of actions J is densely
covered by the ray (cf. Arnold 1978). Such a torus is referred to as a nonresonant
torus. Conversely if for some set of nonzero integers n we have

nwd) =0 , (3.13)

then the torus defined by the actions J is said to be a resonant torus. The totality
of resonant tori forms a subset in the phase space r of (Euclidean) 2f - dimensional
measure zero. In spite of this sparseness, the resonant tori are dense in the phase
space. _

A subvariety of the resonant tori are the periodic tori. A torus is periodic if it
supports closed, and therefore periodic orbits; such orbits arise if the values of the
actions J are such as to secure that for any pair of components of the set of frequen-
cies w (eq. (3.5)) we have

Vij, i = 1,2, ..,f: oj/w=mniln |, (3.14)

ni, nj being nonzero integers. A periodic torus actually carries a continuous infinity
of periodic rays which cover the torus. Although the periodic tori are infinitely sparser
than the resonant ones, they still cover the phase space I' densely. Geometrically
these properties mean that given an arbitrary initial condition (r+o,ko) in phase space
L, there is always an arbitrarily close point (r+opkop) such that latter is an initial
condition of a periodic ray.

We shall need one further result from mechanics for the calculation of asymp-
totic eigenvalues. Let C be a closed ray path in the phase space T'. Let C be the
projection of C onto the extended configuration space (r+). The integral

AS = Jc dr k(r) (3.15)

where k(r) is the uniquely defined value of the wavevector of the periodic solution
at the position r=r= is computed as follows. Introduce the angle-action variables
(3.2), and rewrite the integral

(1/2n) fe dr k = (1/2n) fm1C2+m2C2+...+ miCf d¢ J
= shio) (mim) aSi (3.16)

with

ASi = fciddi Ji = 2 )i, (3.17)
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In these expressions the closed path C in the phase space is decomposed into f "irre-
ducible" circuits of the torus carrying C

C = mCi + mC2 + ... + mCg , (3.18)

the coefficients my1, m2, .. , mf being integers (¢f. Fig. 3 for an illustration of this
decomposition for f=2); the circuits Cj, j = 1, 2, ..., f are the projections of Cj
into the configuration space.

A 4

WV
N

&

Fig. 3. A geriodic orbit C on a 2-dimensional torus T2 can be regarded as a
linear combination with integer coefficients n1 and n2 of the ’irreducible’ circles
C1 and Cz of the torus (illustration for C=Cj1+Cp).

While it is known that integrability of Hamiltonian system is an’exceptional
property (cf. Amold 1978), it has been proved that the acoustic ray Hamiltonian of
a spherically symmetric star is always integrable, irrespective of the run of the sound
speed c(r) throughout the star (Perdang 1986).

4. Hamiltonian ray dynamics. The nonintegrable case

The generic case of stellar ray dynamics in the presence of geometric deforma-
tions of the equilibrium state, is that the Hamiltonian v(r,k) is not globally in-
tegrable. The following possibilities arise.

(A) For initial conditions (ro+,ko) in a subset R of the phase space I we still can
find f local integrals of motion J (eq. (3.1)).
(B) For initial conditions in the complementary subset of the phase space,

'\R = K , | (4.1)

we have less than f local integrals of motion. Notice that even in this case we have
at least one integral, namely the Hamiltonian itself, which remains a global integral.

The limiting case of K being an empty set corresponds to an integrable ray
problem. The limiting case of R being of measure zero is encountered in billiards
with non analytic boundaries (the stadium billiard for instance, cf. Berry 1983; cf. also
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Wojtkowski 1986), since the equations of acoustic rays in an isothermal medium are
equivalent to those of billiards, this latter limit should not be dismissed as entirely
irrelevant under stellar conditions.

(A) In the region R of T we can locally apply the above theoretical analysis. For ini-
tial conditions in R the solutions of the Hamiltonian equations are then again fully
represented in the form (3.6). The rays are supported by f-dimensional tori, Tf,
covering R. The resonant tori, and in particular the periodic orbits, are dense in R.
The region R is thus carrying the regular rays. We refer to it as the regular region
of the phase space.

(B) To characterise the rays in the region K complementary to R, we consider in
some detail the case of a single integral of motion

Jirk) = Jo , 4.2)

assuming that there are no other local integrals.
Again we can set up a canonical transformation

T rkl=d.q J,.p. . (4.3)

where g and p are (f-1)-dimensional arrays of variables, such that the Hamiltonian
in the transformed variables

v (r(¢.g.J.p), k(».gJp)) = G(gpJ) (44)
becomes independent of the unique angular-type variable ¢. The equations of mo-
tion in the variables (g.p) then become

d/dt g = o/ap G(gpJ) and d/dt p = -d/agq G(apJ) . (4.5)

For a given initial action Jo, the variables (q.p) can be solved separately. Let g(t),
p(t) be the solution of system (4.5) for given initial conditions go, Po, Jo. Then the
angular-type variable is obtained by a quadrature

o) = [ dt w(@OR()Jo) + do (4.6)
here ¢o is the angle at time (, and
w(@pJ) = o) G(gpJ) . (4.7)

The main point which transpires from this transformation is that the vector field of
the RHS of system (4.5) cannot be reduced to a constant vector field, or our differ-
ential system is nonsimple in K. In fact, we could carry out a reduction to a simple
differential system, then our Hamiltonian system would again be locally integrable,
which contradicts our hypothesis. Notice that even the angular-type variable #(1) (eq.
(4.6)) obeys here a complicated time behaviour.

The solutions of Hamiltonian systems which are nonsimple are referred in the
literature as chaotic solutions. The region in phase space K occupied by chaotic or-
bits is the chaotic region.
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The existence of a single integral of motion (4.2) confines the ray to a (2f-1)-
dimensional subspace, ZZf_ICI‘, which is invariant under the solutions of our Hamil-
tonian ray system. This invariant subspace 32 in turn may decompose into invariant
subsets, Msz'lczzf‘l, of same dimension 2f-1, which themselves cannot be further
decomposed into invariant sets of dimension 2f-1 (but possibly into lower dimen-
sional sets). An example is provided in Figure 2 which we interpret here as show-
ing the subspace s3crfor a system of 2 degrees of freedom with at least one family
of regular solutions (say for J1'<J1<J1", J1I' J1" two constants); the latter are carried
by a rectangular ’box’ limited to two ’squares’ (cf. Fig. 2); this box then divides the
invariant subspace 33 into two invariant subregions, an ’upper’, M+3, and a ’lower’
one, M_3; a chaotic solution of initial condition in M+ then cannot penetrate into
M_3, since the orbit is unable to cross the tori, the latter being themselves invari-
ant sets of the Hamiltonian system. In the case of 3-dimensional rays and a single
integral of motion there is no such general topological constraint requiring a parti-
tion of the chaotic region into invariant subregions.

The above discussion can be repeated for Hamiltonian ray systems with r<f
local constants of motion, where r may change from one part of the phase space
to the other. Under those conditions we have local regions in phase space of dimen-
sion 2f-r, 32", which decompose again into invariant sets Mk> " in K. The chaotic
region K of the phase space is the union of all of these invariant sets Mka_', The
invariant sets M2 in K play the parts of the (invariant) tori T in R They are
the carriers of the chaotic solutions; and they are densely covered by the latter.
Genealogically these sets are found to arise out of resonant tori; the latter "explode’
(i.e. they acquire a dimension higher than f) as a parameter in the differential sys-
tem is varied. We mention here two properties of the chaotic region K.

On the one hand, it can be shown that the solutions in K have a sensitive de-
pendence on the initial conditions. Intuitively this means that if r44, kg and r4p, kb
(or r-g, ka and rp, kp) define two arbitrarily close points in K playing the parts of
initial conditions for two rays La and Lp, then these rays separate exponentially with
time (for precise definition see Devaney 1986). In other words these rays are un-
stable. This property is often used as the definition of chaotic solutions.

On the other hand the closed rays are dense in K. The difference between
closed rays (periodic solutions of the Hamiltonian ray equations) lying in the chaotic
region and those in the regular region is that the former are stable while the latter
are unstable. Together with the above-mentioned property of denseness of the peri-
odic rays in R, we conclude that the whole phase space I is densely covered by
periodic rays.

We shall see now a few illustrations of regular and chaotic rays in geometri-
cally deformed stars.
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5. Numerical integration of the ray equations

In order to analyse the nature of the ray patterns in stars we have solved
numerically the ray equations (2.12), using the following representation for the run
of the sound speed c¢(r) throughout the star

o)’ = CRY® 5.1)
where R is defined by

2 L

R? ‘= Wsyss ALY Sm=0,+1,+2, .., +/ DIm(L)YIm(('),lb) : (5.2)

R’ =constant thus represents a surface of constant sound speed. The surface of the
star will be represented by R =1. This choice fixes our unit of length.

In expression (5.2) (r,0,4) are the spherical coordinates of a point r of the star,
of Cartesian coordinates (x7, x2, x3),

b i 60 101 el S e

A\

x2 = r sin O sin ¢ (5°3)
X3 = r sin © cos ¢

The coefficients M indicate the order of magnitude of the deformations of the sur-
face of constant sound speed. We require the latter to be small enough so that the
individual surfaces of constant sound speed all remain convex. The integer L denotes
the algebraic degree of the deformation in the radial coordinate; the numerical fac-
tors D1m(l‘) (of order 1) measure the precise values of this deformation for an alge-
braic degree L, a spherical degree /, and an azimuthal number m; the notation
Y™ (0,4) stands as usual for the spherical harmonics. Expression (5.2) shows that R
is an average radius of the surface of constant sound speed.
For the function C(R) we have chosen

cit? € e Ie (5.4)

which reflects the overall trend of the sound speed in a realistic star, although it
does not reproduce the fine structure of the latter. The unit of speed is selected
such as to have a central sound speed equal to 1.

We have investigated stellar configurations whose surfaces of constant sound
speed preserve rotational symmetry Cwoy. The symmetry axis is chosen to be the
Ox; axis, O being the centre of mass of the configuration. Such a symmetry of the
ray Hamiltonian implies that any initial condition ro, ko such that ko is directed
towards the symmetry axis, generates a ray which is confined to the symmetry plane
1 going through the symmetry axis and the initial position ro.
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We have studied so far only those families of rays which lie in the symmetry
planes 11, since those rays are easily displayed graphically. In the absence of sym-
metry planes we have, in general, no families of planar rays. On the other hand, a
systematic investigation of non-planar rays would require special plotting devices of
the ray system (for instance stereoscopic plots).

With our attention focused on planar rays only, the effective Hamiltonian ray
equations we are working with have f=2 degrees of freedom. The physical configu-
ration space is a meridian plane T of the star, and the extended configuration
space has topology S%. The initial conditions for the rays are parametrised as fol-
lows. We first observe that the monotonic structure of the sound speed as a func-
tion of the average radius R of the surfaces of constant sound speed implies that
any ray in 11 intersects the symmetry axis Ox7; we shall refer to the latter as the
polar axis NS (North-South). Any ray can therefore be generated by selecting an ap-
_propriate position ro on the polar axis; let X denote the Cartesian coordinate of this
position. The initial wavevector ko is fixed by the angle w this vector makes with
the positive polar axis Oxj; the symmetry of the configuration implies that O<w<mw;
notice also that w=0 and w=m actually produces the same ray pattern, namely a
ray remaining on the polar axis. We can convince ourselves that the modulus |ko| =k
of the initial wavevector does not influence the ray pattern. In fact, under the same
transformation

k- Kk (5.5)

K an arbitrary real constant, the Hamiltonian (cf. eqs. (2.9, 11)) is multiplied by K.
The Hamiltonian equations (2.12) are seen to remain invariant. Accordingly we par-
ametrise the initial conditions

(X,w) « D'xs! . (5.6)

Since as far as the ray pattern is concerned w=0 and w=mu ; are to be identified,
we see that w is defined over a circle Sl; the position X is defined over a finite
interval D!; therefore the parameter space of the ray patterns in the meridian planes
11 has the topology of a cylindrical surface D'xs.

The following shapes of the surfaces of constant sound speed have been studied.
(A) If we set AL=0 for L>2, we have the trivial case of a deformation that pre-
serves the spherical symmetry. We have mentioned that the corresponding ray equa-
tions remain integrable irrespectively of the precise functional form of C(R).

The rays belong to one of the following families.
(a) For initial conditions w=0 or m and X arbitrary, we generate a Polar Ray (PR)
i.e. a closed ray coinciding with the polar diameter of the star.
(b) For initial conditions X=0 (centre of the star) and 0<w<m , we generate a
Radial Ray (RR) i.e. a closed ray coinciding with an arbitrary diameter of the star.
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The admittedly artificial distinction between radial rays and the polar ray, re-

lated to our choice of the parameter space (5.6) of the initial conditions, may ap-
pear as misleading; actually, it will turn out to be relevant in the case of the deformed
configurations.
(c) For initial conditions X =0 and w =0 and © we generate a Surface Ray (SR);
the surface ray remains confined to an outer ring in the star; due to the spherical
svmmetry of the configuration the ring has a circular inner boundary or caustic
(Perdang 1986); the outer boundary is the surface of the star. In the extended con-
figuration space of topology S% the image of this ring is a spherical annulus As; the
latter is either densely covered by the projection of the orbit, or it carries a closed
(periodic) orbit; the two boundaries of the annulus (which coincide with the inner
boundary of the ring in the physical configuration space) are the caustics of the ray
family. As the initial condition X approaches the origin, the annular region Ay tends
to cover the whole extended configuration space; the circular caustic then degener-
ates into a single point of the physical configuration space ( the image of two points
of the extended configuration space). Denote by F(PR), F(RR) and F(SR) the sets
of polar rays, radial rays and surface rays respectively. Then the definition of these
families implies that the closure of the set of SR, ¢/ F(SR), is given by

¢l F(SR) = F(SR) u F(RR) u F(PR) . (5.7)
The set of radial and polar rays can therefore be written
F(RR) u F(PR) = ¢l F(SR) \ F(SR) = a F(SR) ] (5.7a)

where a F(SR) stands for the derived set (or set of limit points) of the set of sur-
face rays.

It is perhaps also interesting to observe that the closure of the radial rays as
defined above obeys

¢l F(RR) = F(RR) u F(PR) (5.8)
or
F(PR) = ¢/ F(RR) \ F(RR) = 4 F(RR) . (5.8a)

In the 2-dimensional space of initial conditions (5.6) we notice that the fami-
lies F(PR) and F(RR) are generated by 1-dimensional sets of points, which are there-
fore of measure zero; almost all points of the space (5.6) produce surface rays.
(B) If AL=0 for L=3, with A2 =0, then the deformed surfaces of constant sound
speed are ellipsoids, which, by our assumption are of revolution. We represent the
latter in the parametric form

2) Rl ) o o
R = 1" (ap cos™® + ap sin“0) . (5.9)
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Fig. 5. Pseudo focal rays of the pear-shaped configuration: (a) schematic rep-
resentation of the caustics and their singularities; (b) an illustration of a sur-
face focal ray.

We shall choose

ap an2 =1 3 (5.9a)
in order to secure that the volume of the ellipsoid remains equal to the volume of
the nondistorted sphere. The family of ellipsoidal cofigurations is then specified by
a single independent parameter, which is taken as ap. It can be shown that the ray
equations remain integrable for the specific representation of the run of the sound
speed (5.4). We shall consider only the case ap<1 corresponding to prolate ellip-
soids; for oblate ellipsoids the classification of the ray families in the meridian planes
is obtained mutatis mutandis as a result of a trivial duality of the meridian planes
in both configurations.
The numerical integration of the ray equations in the meridian planes demon-
strates the existence of the following families of planar rays.
(a) For initial conditions w=0 or n and X arbitrary, we generate a ray propagat-
ing along the longest diameter (Longest Diameter Ray, LDR).
(b) For initial conditions w arbitrary and X = +f, where =f are the Cartesian coordi-
nates of two specific points FN and Fs on the polar axis, we produce rays with the
following property: a ray through Fs is reflected at the surface and sent through FN
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and vice versa. The points FN and Fg thus play the parts of acoustic foci. We refer
to these rays as Focal Rays (FR).

The distinction we make here between LDR and FR, just as the artificial dis-
tinction between PR and RR in the case of spherical symmetry, appears as being
related to the special parametrisation of the initial conditions; its physical relevance
will transpire at a later stage of the distortion of the star.

(c) An initial condition O<w<m and |X|<f, generates a ray constrained to stay
in a zone of the physical configuration space limited by the two branches of a hy-
perbola (cf. Fig. 4); these branches appear as the caustics of the ray in the physical
configuration space; they are the images of the two boundaries of the ray in an annu-
lar region Apm of the extended configuration space of topology $2. Since the zone
accessible to this family of rays lies around the minor axis of the ellipsoidal surfaces
of constant sound speed, the rays are referred to as Minor Axis Rays (MAR). For a
given MAR the corresponding annulus of accessibility AM in the extended phase
space is either densely covered, or the ray is closed. While any MAR avoids the
polar caps in the extended configuration space, as |X| approaches f, the avoided
zones progressively shrink to the two line segments SFs and NFN in the physical
configuration space (N, S, North and South pole of the star respectively); the latter
are degenerate caustics in the physical configuration space; the annulus Am then
tends to cover the whole of the extended configuration space.

(d) Any initial condition O<w<m and |X|>f, produces a ray which, in the physi-
cal configuration space (of disk topology), is confined to a zone between the surface
of the star and an ellipse (cf. Fig. 4); the latter plays the part of the caustic of this
ray in the physical configuration space; the elliptical boundary is again the image of
the two boundaries, or caustics of the ray in the extended configuration space, of
an annular region As. In the physical configuration space the zore accessible to this
class of rays lies near the surface of the star; therefore this family is referred to as
the family of Surface Rays (SR). Notice that as |X| approaches f, the avoided zone
in the physical configuration space shrinks to the line segment FSFN which is also a
degenerate caustic; the annulus As thus tends again to cover the full configuration
space.

The mode of generation of these families of rays makes it clear that the fami-
lies F(LDR) and F(FR) arise out of 1-dimensional sets of initial conditions in the
2-dimensional space of initial conditions (5.6), so that they are of measure zero
among the totality of rays; the families F(MAR) and F(SR) have 2-dimensional sets
of initial conditions in the space of initial conditions (5.6) .

The closure of the SR or the MAR obeys

¢l F(SR) = F(SR) u F(FR) u F(LDR) , (5.10)
¢! F(MAR) = F(MAR) u F(FR) u F(LDR) ,
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) that.
F(FR) u F(LDR) = ¢l F(SR) \ F(SR) = 4 F(SR) : (5.10a)

= ¢/ F(MAR) \ F(MAR) = s F(MAR) ;
or alternatively

F(FR) u F(LDR) = ¢! F(SR) n ¢/ F(MAR) . (5.10b)
Likewise
cl F(FR) = F(FR) u F(LDR) , (5.1'1)
or
F(LDRR) = ¢l F(FR) \ F(FR) = a F(FR) (5.11a)

As the ellipsoidal deformation parameter A2 vanishes (or ap — 1), the family
of minor axis rays together with the family of focal rays degenerate into the class of
radial rays of the sphere; the longest diameter ray becomes the polar ray of the
sphere while the surface rays transform into surface rays of the sphere:

Ay —» 0: F(MAR) u F(FR) - F(RR)
F(LDR) - F(PR)
F(SR) — F(SR) : (5.12)

Or conversely, through the breaking of the spherical symmetry by an ellipsoidal dis-
tortion the degenerate radial rays "unfold" into minor axis rays and focal rays.

(¢) By setting AL=0 for L=4, with A2 and X320 , the deformed surfaces of con-
stant sound speed become in principle arbitrary surfaces of third degree. By our
above assumptions these surfaces are required to be closed, convex and of revolu-
tion about the polar axis. We shall actually restrict the class of surfaces further by
adopting here the following parametric form ‘

R? = r? (ap cos’o + an sinz(-))
+ B 2 cos © (bp cos’® + bn sinze) (5.13)
in which we set
bp = 1 and ba = -3/2 : (5.13a)

Without loss we require again relation (5.9a) to hold, so that the configurations ac-
tually investigated depend on two parameters ap and p; the latter parameter meas-
ures here the order of magnitude of the cubic deformation which confers the surfaces
of constant sound speed a pear-shaped structure. We shall refer to the point of
greatest. curvature of the surface of the star as the North pole (N); the diametrically
opposite point will be called the South pole (S).
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The astrophysical relevance of such a family of surfaces of constant sound speed
is that they are encountered in stars of homogeneous density whose equilibrium struc-
ture is deformed by a close companion, the effect of the tidal distortion is computed
to third degree in the Cartesian coordinates of the star (cf. Moray 1986). Such con-
figurations are direct extensions of the classical Jeans ellipsoids (Chandrasekhar
1969).

The formal reason why we have not analysed the most general type of cubic
deformations (5.2) compatible with our symmetry.requirement is that parametric rep-
resentation (5.13) is already found to be flexible enough to produce. nonintegrable
ray Hamiltonians, and therefore also chaotic families of rays. In fact, the numerical
results seemingly indicate that for any value B=0 we have a nonintegrable ray
Hamiltonian.

The rays we find belong to the following families.

.(a) The initial conditions w=0 or m and X arbitrary, produce again a ray propagat-
ing along the polar axis (Longest Diameter Ray LDR).

(b) For initial conditions O<w<mn and X=fN, where fN is the Cartesian coordi-
nate of a singular point FN closest to the North pole on the polar axis, we notice
that a ray going through Fn traverses FN again and again. This ray displays a closed
caustic having FN as a cusp point (Fig. 5); the caustic intersects the polar axis at a
second point @5, of Cartesian coordinate Es, close to the South pole. FN is seen to
play a part reminiscent of a focus of the ellipsoidal configuration. I shall refer to
such a ray as a Surface Focal Ray (SFR).

(¢) In a parallel fashion, initial conditions 0<w<m and X =f;, where f; is the Car-
tesian coordinate of a singular point Fs on the polar axis closest to the South pole,
give rise to a ray traversing Fs again and again. Such a ray is found to have a caus-
tic consisting of two branches, one towards the South pole having Fs as a cusli point
(Fig. 5); the other branch, closer to the North pole, is smooth and intersects the
polar axis at a point ®N of coordinate EN. Again Fs is reminiscent of a focus of
the ellipsoidal configuration. I shall refer to such a ray as a Minor Axis Focal Ray
(MFR).

(d) For an initial condition 0<w<m and f;<X< EN, we generate a ray in the
physical configuration space constrained to stay in a zone limited by the two branches
of a distorted hyperbola (cf. Fig. 4); as in the ellipsoidal configuration, the latter
branches are the caustics of this ray in the physical configuration space; again these
branches are the ’projections’ of the two boundaries of a region of annular topology
AM of the extended configuration space. Such rays are therefore Minor Axis Rays
which either densely cover the annulus of accessibility AM in the extended phase
space, or they represent closed orbits. As X approaches the critical point Fs, . the
caustic tends towards the caustic of the minor axis focal rays.
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(e) An initial condition 0<w<m and X>fN or X< E , leads to a ray which, in
the physical configuration space, is confined to a zone between the surface of the
star and a deformed ellipse (cf. Fig. 4); the inner boundary is the caustic of the ray
pattern in the physical configuration space; this caustic in turn is the projection of
the two caustics of the ray in the extended configuration space; the ray covers an
annular region As in the latter configuration space, the covering being dense if the
ray is not periodic. This family of rays are the Surface Rays. If we let X approach
the singular point FN, we notice that the caustic deforms into the caustic of the sur-
face focal rays. :

The ray families so far listed are all regular families of acoustic rays of the
pear-shaped star. The patterns of these rays traced out in the physical configuration
space are obtained by a regular deformation of the corresponding patterns of the
ray families in ellipsoidal stars. As is seen in Figure 4, these ray patterns do indeed
preserve a regular-looking geometry.

In addition to the regular rays, the numerical integration reveals the existence

of a presumably chaotic ray family.
(f) If 0<w<m, and EN<X< fN or fy<X< Es, then we generate a ray which
seemingly covers the whole physical configuration space densely; the coverage is not
uniform, the orbits being apparently more concentrated in the neighbourhood of the
degenerate caustics of the focal rays. We cannot disclose any regular geometric pat-
tern in this ray system, so that we have good reasons to believe that we are deal-
ing with a chaotic ray. We therefore refer to this family as the Chaotic Rays (CR).
Figure 4 produces illustrations of these rays in pear-shaped configurations for differ-
ent values of the parameters ap and 8.

I should point out that a detailed numerical demonstration of the chaotic na-
ture of all of these latter rays — for instance by means of a surface of section analy-
sis — is so far lacking. A word of caution is therefore in order. Although it seems
very unlikely that the ray Hamiltonian of the pear-shaped configurations is integrable,
it could well be that "in between" the surface and minor axis focal rays there exist
other regular families, which then ought to display caustics. The caustics we are con-
cerned with here are the boundaries of the projections onto a plane of 2-dimen-
sional tori, embedded in a 4-dimensional space. It is quite obvious that the latter
may develop singularities over some parameier range; intuitively, the boundary of
the shadow cast by a tyre on a table, shows, for certain ranges of orientation of the
tyre an angular point. From the general theory of caustics (see Amold 1983, Ozorio
de Almeida and Hannay 1982, Nye 1985) it is indeed known that under a change of
p parameters catastrophes of codimension (p +2) may occur on the caustics. In other
words, beyond the range of our initial conditions which produce surface rays and
then surface focal rays (with a singularity in their caustic), we have no a priori math-
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ematical argument to exclude a family of rays with a caustic exhibiting stable singu-
larities; a similar remark holds for the minor axis rays and minor axis focal rays.
The presence of the caustic itself is a fingerprint of regularity of the ray.

Futhermore it is likely that the precise values of the parameters of the con-
figuration influence the structure of the caustics. For strongly deformed pear-shaped
stars (B ~ 0.2) we find that the caustic of the surface rays tends to develop two ad-
ditional singular points off the polar axis; the chaotic ray pattern then shows a high
concentration of rays in the neighbourhood of those points.

The above presented classification of the families of acoustic rays in a pear-
shaped star, although more refined than the preliminary classification given in Perdang
(1987), should therefore be considered as a tentative and incomplete one. In partic-
ular a closer examination of the different shapes of the caustics is needed, since, as
will be indicated below, the nature of the configuration of the caustics influences the
asymptotic oscillation frequencies.

The definition of the different families of rays implies that the families F(LDR),
F(SFR), and F(MFR) are produced from initial conditions in 1-dimensional sets of
the 2-dimensional space of initial conditions (5.6); therefore these families are of
measure zero among the totality of rays; the families F(IMAR) and F(SR), as well
as the family of chaotic rays, F(CR), have 2-dimensional sets of initial conditions in
the space of initial conditions (5.6). Randomly selected initial conditions in the space
(5.6) thus generate surface rays, minor axis rays, or chaotic rays with probability 1;
LDR, SFR and MFR have probability 0.

The closure of the SR or the MAR obeys

cl F(SR) = F(SR) u F(SFR) u F(LDR)
c F(MAR) = F(MAR) u F(MFR) u F(LDR) , ('5.14)
¢/ F(CR) = F(CR) u F(SFR) u F(MFR) u F(LDR) ,
so that
F(SFR) u F(LDR) = ¢l F(SR) \ F(SR) = & F(SR) ,
F(MFR) u F(LDR) = ¢/ F(MAR) \ F(MAR) = 3 F(MAR) , (5.14a)
F(SFR) u F(MFR) u F(LDR) = ¢!/ F(CR) \ F(CR) = 4 F(CR) ;
or alternatively
F(SFR) u F(LDR) = ¢l F(SR) n F(CR) h (5.14b)
F(MFR) u F(LDR) = ¢/ F(MAR) n ¢l F(CR)

As the cubic deformation parameter A3 vanishes we notice that the chaotic rays col-
lapse onto the focal rays of the ellipsoidal configuration, the surface says, minor axis
rays and longest diameter rays deform into surface rays, or more precisely
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A3~ 0: F(CR) u F(SFR) u F(MFR) - F(FR)
F(LDR) — F(LDR)
F(MAR) - F(MAR) |,

F(SR) - F(SR) . (5.15)

)

Conversely, the breaking of the ellipsoidal symmetry by a pear-shaped distortion un-
folds the degenerate focal rays into chaotic rays together with their derived set. Since
the focal rays form the boundary’ between two distinct classes of regular rays, namely
the SR and MAR, it should not come as a surprise that the ’explosion’ of the lat-
ter under a change of a parameter of the star, leads to chaos; this kind of unfold-
ing of a frontier between two families of regular orbits is in fact a traditional route
to chaos in Hamiltonian systems. The classical illustration is the occurrence of chaos
on the separatrix between the family of oscillatory motions and the rotations of the
pendulum, when the latter is perturbed by a plane wave (cf. Chernikov et al. 1987).

Finally, the combination of relations (5.15) and (5.12) demonstrates that the
chaotic rays arise as the unfolding of the singular radial rays of the sphere, the degener-
acy being lifted by the terms of third degree ( A3=0) of the deformation of the
sphere. As we shall see, this observation is relevant for the location of quantum
chaos in the oscillation spectrum of a pear-shaped star.

Before we bring this section on the numerical investigation of the rays to a
close we wish to emphasise the following further points.
(1) We have discussed only deformed stellar models of Cwy symmetry which there-
fore admit of planar ray systems in the physical configuration space. In addition to
the latter these models also admit of 3-dimensional rays which remain entirely to be
investigated, the only information on these rays we have at the moment is that the
axial symmetry implies the existence of a second integral.
(2) Our restriction to the Cwy symmetry implies a mirror symmetry in the plane Il
of the rays, with respect to the NS axis; this symmetry in turn secures the existence
of a singular ray of one degree of freedom, namely the longest diameter ray. It has
been argued on the basis of numerical experiments that 2-dimensional billiards lack-
ing this mirror symmetry present a behaviour differing significantly from the be-
haviour of symmetric billiards (Hayli and Dumont 1986). Since ray propagation shares
many geometric properties of its ray patterns with the patterns of billiard orbits, we
expect that our problem develops likewise a more complicated type of behaviour
under a symmetry breaking destroying the reflection axis. In fact, we can present a
general intuitive argument in favour of the appearance of a further class of orbits:
On the one hand the LDR is unstable , and this orbit is degenerate; on the other
hand a slight generic symmetry breaking lifts the degeneracy of this orbit; the latter
then ’explodes’ into a family of orbits filling a certain volume of phase space; since
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the LDR belongs to the frontier of two distinct regular families of rays, namely the
surface and minor axis rays, the breaking up is again likely to produce a chaotic
class of rays; furthermore, since the LDR also belongs to the derived set of the
chaotic ray family, unfolding the degeneracy may produce a chaotic family prolon-
gating the CR family we have traced above.

(3) For arbitrary convex surfaces of constant sound speed we have no geometric sym-
metry, so that all ray families are 3-dimensional (f=3). Generically the ray equations
then admit of no integral besides the frequency integral Q(r,k) = constant. The chaotic
region K in the phase space I' is then connected, forming what has been called a
stochastic web (Chernikov et al. 1987); any chaotic ray diffuses all through the phase
space. It is so far unknown whether this ’Arnold diffusion’ manifests itself on the
structure of the asymptotic frequency spectrum.

6. The nonstandard asymptotic wave equation

The above chapters were concerned with the ’classical’ approximation to the
wave equation. We shall now analyse how these ray properties materialise in the
asymptotic spectrum of eigenvalues. A precise definition of what we mean by ’asymp-
totics” will be presented below.

Suppose we have at our disposal an ideal computer (or a measuring device)
capable of solving the frequencies of the full standing wave equation (respectively
capable of recording the frequencies) of oscillations of stars of arbitrary symmetry.
Even though ideal, such a computer will be able to deal with numbers in some range
only. The computer can find only those eigenfrequencies whose numerical values,
when expressed in a given system of units, obey

weA with A= {olu<lo|<M} c X |, (6.1)

where p and M are positive numbers of a given class X (for instance the ration- -
als, or the reals, or the complex numbers); the set of ’accessibility’ A is a subset of
the number set X; the latter may be called the ’enlargement’ of the set A. Typi-
cally, the ’resolution’ of the computer, u, is of the order of 1/M.

Although capable of operating precisely with numbers of A alone, the computer
can deal with numbers of the ’enlargement’ of the set A , according to the follow-
ing prescriptions: (1) A frequency less than p appears as ’infinitesimal’ to the com-
puter, and is actually set equal to zero in the computations. (2) Two frequencies
which differ by less than the resolution p are regarded as equal by the computer.
(3) A frequency exceeding M plays the part of an ’infinite’ number, and is actually
treated as such in the calculations (its inverse is set zero efc.).
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As is known from the spherically symmetric case, the spectrum of the acoustic
eigenfrequencies of a star is unbounded, and this property holds also for the case
of stars lacking the spherical symmetry. Accordingly, the limitation (6.1) of the com-
puter seemingly entails that most of the acoustic spectrum — and in fact almost all
of it — will remain numerically inaccessible.

The relevant point is that by resorting to adequate scalings (S(p)) and transla-
tions (T(z)) of the frequencies.

S() 1 wl=pe (62)
T(e) : al|=e +t T,

p and T being arbitrary positive numbers of X, i.e. not constrained to lie in the
range (6.1), we can manifestly transform any set of frequencies not inside the range
of accessibility into a set of frequencies belonging to this range. The scaling may
produce an unwanted side effect; it may generate an overcrowding of the frequen-
cies such as to have a spacing between successive discrete frequencies less than the
computer resolution p; the rescaled spectrum then appears to be continuous. The
actual discreteness of the spectrum can however be restored by using a second mag-
nifying scaling.

These remarks are meant to make it clear that through successive transforma-
tions (6.2) of the spectral equations we can investigate the eigenfrequencies indirectly,
in any (arbitrarily large, or small) range of the frequency axis.

The mathematical framework capable of formalising and generalising the above
ideas is provided by nonstandard analysis. We regard as the counterpart of the ’set
of accessibility’ A (eq. (6.1)) a set of real numbers R, more specifically called here
the set of standard reals. The analogue of the ’enlargement’ of the latter, denoted
by *R, is referred to as the set of nonstandard reals. The (undefined) predicates
‘standard’ and ’nonstandard’ are specified by 3 axioms due to Nelson (1977; cf. the
short text by Robert 1985 for a simple introduction to Nelson’s theory). For our pur-
poses we shall make explicit use of two of them which will be stated informally.
(1) Given a set of numbers x obeying an ’internal’ relation R with free variables
(parameters), then there exists at least one number *x satisfying relation R, and in
addition possessing certain attributes of Leibniz’s infinite (or infinitesimal) numbers.
By ’internal’ we mean that the relation itself does not involve the labels ’standard’
or ’nonstandard’; by ’free variables’ in the relation it is understood that the relation
itself does not contain quantifiers (for instance R(x) is not allowed to stand for ’there
is an x such that x> 100, but it may stand for x >100’). We refer to this statement
as the principle or Axiom of Idealisation. The set of all numbers x and *x is a non-
standard set *B.
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(2) If a given ’internal’ relation R with free variables x and ¢, ¢, ..., ™ holds for
’standard’ values of the variables, then it holds also for any value of the variable x.
This is known as the principle or Aviom of Transfer. We illustrate the latter prin-
ciple by an example. If x and ¢ are conventional (standard) reals, then for any such
pair we have the relation (x<t or x =t or x>t); in this form this relation transfers
to any real *x, i.e. any element of the set of nonstandard reals *R, with ¢ remain-
ing however standard, or (*vx<t or *x=t or *x>¢). On the other hand, consider the
conventional relation ’any conventional (standard) real x is finite, F(x)’; the relation
F(x) is here an abbreviation for the explicit relation (3 ¢, ¢ finite) (x<t); the varia-
ble ¢ is not free here, therefore the relaiion cannot be transferred to the nonstand-
ard reals.

The enlargement of the set of integers Z (the standard integers), *Z (the non-
standard integers), contains in fact, besides all the finite integers 0, =1, =2, ..., =n,
= (n+1), also a new class of integers =*J, +(*J+1), ..., *J being one representative
of the integers not in Z; such an integer is referred to as an ’infinite’ integer. The
existence of at least one such integer is secured by the principle of idealisation. The
transfer principle then enables us to conclude that if *Je*Z then =(*J+1)e*Z,
since the counterpart of this relation exists in the standard set Z; continuing in this
fashion one sees that there is an infinity of infinite integers. The enlargement of the
set of reals R, the nonstandard reals *R, contains, by successive applications of the
transfer principle, all of the infinite integers, as well as numbers of the form
:(a(*.l)b+c), where a and b are arbitrary conventional reals; if b>0 these numbers
are called ’infinite’ reals (*L); if @ is standard, b<0, and ¢ =0, they are ’infinitesi-
mal’ numbers (*e ).

As a final tool from nonstandard analysis we need the operation of extracting
the standard component — if it exists — out of a nonstandard element. This stand-
ard part, or shadow, of a nonstandard element *x of the enlargement *X of a stand-
ard set X is the element x e X ’closest’ to *x; the latter requirement implies that
we have endowed the set X with a distance. For instance, if *v is a nonstandard
finite real, we can always decompose the latter in the form

% = x + * (6.3)
where *e is an infinitesimal, and x a standard real; then

SHEX) = x . (6.3a)
the natural distance between two reals (standard or nonstandard) x,y being the ab-
solute value |x-y| .

We have explicitly mentioned so far only nonstandard sets of numbers. Non-
standard functions, manifolds efc. can then be introduced in a natural way. We shall
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make a free use of these concepts for our investigation of the spectrum of the acous-
tic wave equation.

In our physical context the operation ’standard part’ formalises the procedure
of 'neglecting higher orders’; ’infinitesimals’ model those contributions which are
’small’, and which, at the same stage, will be discarded; ’infinites’ represent what we
mean in physical problems by ’large quantities’ ¢f. Harthong 1981). The nonstandard
setting thus offers a clean and systematic framework for dealing with what is known
as 'asymptotics’ in physical problems.

Consider the complete linearised adiabatic oscillation eigenvalue equations for
a star of arbitrary symmetry, in the form of the linearised equation of continuity, the
linearised equation of momentum, the gravitational field equation, and the constraint
of adiabaticity. We are then dealing with a system of partial differential equations
in space, involving as the highest space derivatives the Laplacian. We regard these
equations as nonstandard equations defined over nonstandard configuration space *V
(the nonstandard volume of the star) of (nonstandard) coordinates r ; the eigenfunc-
tions themselves are thereby turned into nonstandard functions.

Without loss the latter will be represented in the following form

*O(r) = *A(r) expi *L S’(r)] , (6.4)
with
*A(r) = *P(r) exp[i *o(r)] (6.4a)
all functions in this representation are nonstandard.

The starred parameter *L will now be set equal to an infinite positive real;
this enables us to capture the spectrum of the asymptotic i.e. infinite eigenvalues of
the acoustic spectrum. In fact, since we do know that the spectrum of the conven-
tional acoustic frequencies is unbounded, the nonstandard spectrum of the nonstand-
ard extension of the eigenvalue problem must contain infinite eigenvalues (idealisation).

The complex ansatz for the eigenfunction (6.4, 4a) singles out a pseudo ampli-
tude factor, *A(r), and a phase factor *L S’(r). The pseudo amplitude itself is rep-
resented again in the form of a true amplitude (*P(r) real and nonnegative) and an
extra phase *@(r). This representation is chosen by analogy with conventional asymp-
totic theory. The presence of the infinite factor *L causes the phase to oscillate in-
finitely rapidly over any finite length, while the function §’(r) is varying smoothly.
Likewise the pseudo amplitude *A (r) changes smoothly over finite lengths, with the
exception of the crossings of a critical region *U, where different kinds of accident
may happen: On the one hand *A(r) may become infinitesimal and go through zero,
changing its. sign; this is taken care of by an extra phase shift of (=) introduced by
*o(r). Or *A(r) may take on infinite values, again in general with an accompanying
change of phase described by *@(r). Or finally, at the surface, where the wave suffers
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a reflection, the function *A(r) may undergo a phase shift. The extra phase factor
*@(r) thus enters in our representation to handle the explicitly nonstandard behaviour
of the pseudo amplitude; by construction *@(r) is constant over the remainder of
the star *V \*U.

Ideally the critical region *U should be found by fully solving tha eigenvalue
problem without directly using the ansatz (6.4); *U is then the set of values r ¢ *V
over which the eigenfunction *O(r) becomes infinitesimal or infinite when it is oscil-
lating infinitely rapidly in space; the measure of infinity is fixed by the arbitrary par-
ameter *L. As a rule, and in all cases we are interested in, this definition implies
that the surface of the star is included in *U. In practice, of course, the search for
*U has to be carried out by some approximation procedure. (For instance, by sub-
stituting the ansatz (6.4) into the wave equation and ordering the latter with respect
to decreasing power in *L, the solution for *A(r) in the leading order shows that
this amplitude diverges over certain regions — which turn out in fact to be the clas-
sical caustics — or at the singular points of the partial differential equations, such
as at the surface of the star). It transpires from our very definition of the set *U
that with *L infinite, this region has an infinitesimal ’thickness’ c:("L)_b, b some
pbsitive number; therefore, although its topological dimension is equal to the dimen-
sion of the configuration space *V (f in our previous notation), the standard part
U=st(*U) acquires a lower dimension — physically, because it coincides with the
caustics and regions of singularities. If f=3, the dimension of U will typically be 2.
This implies that st (*©(r)) changes in fact discontinuously as the wavefunction crosses
U, while it takes on constant values in the standard region V\U.

: If we substitute ansatz (6.4) into the partial differential equations, we notice
that any operation with a/ar on the eigenfunction produces a term proportional to
*L. The system thus takes the form

L)%K 100 + .. = (*o)? *00) + .. (6.5)
where the terms not explicited are of ’orders’ (*L) or (’L)0=1, or *w ; c(r) is the
sound speed as above, and k’ is defined as

*L K = *L ofor S'(r) = a/or S(r) = k (6.6)

a comparison with equations (2.7,9) shows that k’ appears as a rescaled wavevector;
S’(r) in turn is interpreted as a rescaled Hamiltonian-Jacobi action function.

Let now *wref=*L wo be a reference infinite eigenvalue, wo being a finite real

frequency; we shall identify the latter with the fundamental acoustic frequency of the

star. If we then divide equation (6.5) by ("‘L)2 and take the standard part, we are
left with the equation

c®?IK’0(r) = ¢’0(r) inV\U (6.7)
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for r ranging over the standard part of the configuration space of the star, from
which we exclude the standard part of the exceptional ’surface’ U; the latter will re-
quire a special treatment.

All factors entering equation (6.7) are standard. We use the notation O(r) for
st(*O(r)). The parameter o is defined as

o = st (*o [*wrel) (6.8)

i.e. it represents the infinite eigenvalues of the spectrum, rescaled so as to become
accessible to numerical calculations; we refer to this spectrum of eigenvalues o as
the rescaled spectrum. The (nonstandard) eigenfrequencies themselves near the ref-
erence frequency *wref will be labelled.

.S e < Yorefl £ Yoref S *oref+1 < *oref+2 s .. = ‘mref+q £ (6-9)

The relative ordering parameter ¢ (integer) with respect to the reference eigen-
value will be used as the identification label of the rescaled spectrum, whose eigen-
values will be denoted by og.

It is known that the density function of the acoustic spectrum, g(w) (number of
frequencies per unit frequency interval) is a power law of the frequency w for large
enough frequencies (Perdang 1982), which we may write

go) = (go/wo)(wlwo)> " (6.10)

here go is a dimensionless parameter (of order of magnitude 1), and D a numeri-
cal parameter which can be interpreted as a fractal spectral dimension; in a ficti-
tious star in which the sound speed nowhere vanishes, D is equal to the dimension
of the configuration space (D =3); for conventional stellar models with vanishing sur-
face sound speed D is close to 4.5 . The transfer principle enables us to extend this
relation to the nonstandard infinite eigenvalues. From this relation it follows that the
average (nonstandard) spacing between eigenvalues near the eigenvalue *o is

B ~ Balagtel (6.10a)

showing that this spacing is infinitesimal. Accordingly the standard part of the aver-
age spacing of the rescaled spectrum (6.8) vanishes, or the rescaled spectrum ap-
pears as a continuum, of density described by the formula (6.10). In order to preserve
information on the actual discrete character of the infinite eigenvalues, we introduce
a renormalised spacing parametrically depending on a standard coefficient d, as fol-

lows
sd(q,ref) = st [(*wrcf)d(wref+q ~wref)], 0=d s D-1 . (6.11)

We shall refer to this standard function as the d-spacing function. The interest of
this measure of the spacing is that it enables us to pick those families of modes
which have nonstandard spacings of order *wref® ; families with spacings 'substan-
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tially smaller’ than *oref’ i.e. of the form *aref %, a a positive finite real, have in-
finitesimal renormalised spacings whose standard part is then zero; those whose spac-
ings are of the form *re’ T have infinite renormalised spacings, and their standard
part ceases to exist.

We next observe that if we introduce the ansatz (6.4) into the simple wave
equation (2.7) interpreted as a nonstandard equation, and if we carry out the same
manipulations as above, we again end up with the same standard equation (6.7).

This coincidence leads us to define the asymptotic form of the nonstandard
acoustic oscillation eigenvalue equation as the analytically simplest form of .the par-
tial differential eigenvalue problem producing the rescaled spectrum of eigenvalues
as well as the O-spacing function of the true acoustic eigenvalue problem. Barring
contrived situations, we notice that this simplest form is generated by throwing away
all but the highest space and time derivatives of the original wave equation in our
case, the relevant asymptotic form of our acoustic equations is then equation (2.7)
(to be regarded as nonstandard).

A word of physical justification of our admittedly lengthy procedure of intro-
ducing the ’asymptotic form’ associated with our starting eigenvalue problem is in
order. The actual spectrum of the acoustic eigenvalue problem is soiled by numer-
ous physical phenomena, such as for instance the interaction with gravity modes, the
effect of gravitational field fluctuations etc. This physical *pollution’ creates a local
disorder in the structure of the spectrum, causing the spacings of the eigenvalues to
vary nonsmoothly. As we proceed to larger acoustic eigenvalues, however, this local
disorder becomes progressively less important. The interest of the nonstandard formu-
lation is that in the range of the infinite eigenvalues the physical contamination is
practically sifted out; the corrections due to the latter become infinitesimal, requir-
ing for their examination an analysis of the d-spacing functions, with d= 1. The virtue
of the introduction of the asymptotic form of the acoustic eigenvalue equations is
that the latter fully eliminates the pollution effects at the outset.

As we shall demonstrate, this does not preclude the existence of disorder in
the spectrum of the asymptotic form of the eigenvalue problem. Irregularities which
reach into this asymptotic spectrum are more fundamental than the physical contami-
nation effects; they are irreducibly linked to the geometrical nature of the partial
differential equation. They conceal therefore information on the geometry of the stel-
lar structure. ;

I believe that the approach outlined here for the study of the acoustic eigen-
value problem eliminates the kind of ambiguities surrounding the concept of quan-
tum chaos as encountered in quantum chemistry. Various authors have indeed
interpreted mere pollution effects as the signature of quantum chaos in the low-
lying energy levels of various quantum mechanical systems.
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7. Integrable and nonintegrable wave equations.
Stellar quantum regularity and chaos

We shall analyse in this section the distribution of the asymptotic, i.e. infinite,
eigenvalues of the asymptotic form of the acoustic eigenvalue problem. The latter
will be said to be integrable or nonintegrable, depending on whether the associated
Hamiltonian ray problem (egs. (2.9, 11, 12)) is integrable or nonintegrable. There
will be no difficulty in regarding the latter as a nonstandard Hamiltonian system.
(A) We consider first the integrable case.

By virtue of the denseness of the periodic tori in the phase space, arbitrarily
close to any point of the (nonstandard) phase space *I' there exists a closed non-
standard orbit *C of our Hamiltonian ray equations, carried by a (nonstandard) f-di-
mensional torus *T. Let *o(r) be a stationary wave function defined along the
projection *C of the path *C, onto the extended nonstandard configuration space. If
ro is an initial point of *C, and if we describe the path *C in the direction ko, back
to the initial point ro then the hypothesis of stationarity of the wavefunction implies
that the total change of phase of the latter is an integer multiple of 2w, Using the
decomposition of the actual path into irreducible circuits of the torus (eq. (3.18)),
the latter requirement amounts to the condition

A%S7 L AS o e =1 Q00 P T (7.1)

where nj is an infinite integer, and A*® and *L AS’ are the changes of the two phase
factors entering the wave function (6.4) as we follow the irreducible (nonstandard)
circuit *C; . The change in §’ is given by

AS’ = [y, dS' = [a, drofdr S'(r) = [+, drk (7.2)

with the notations of (6.6). But the latter expression is given, up to the factor *L,
by equation (3.17), so that it is measured by an action J; . The change in the extra
phase factor A*e is just equal to the algebraic sum of the different changes this
phase suffers at the passages of *Ci, through the critical set *U. The change of A*@
at an individual crossing ¢ of *U is denoted by (/2) *u¢i ; in the standard limit
when U collapses to a surface, the factor p is known in the literature as the Maslov
index of the critical point (the intersection of the standard sets U and C; being a
point), the latter is a topological parameter (defined modulo 4), whose explicit com-
putation on classical cautics is described in Maslov (1972; cf. also Amold 1978). De-
noting by *u; the algebraic sum of the indices *Mci over all crossing points of the
circuit *Cj, we finally see that the total phase change (7.1) of a stationary wave yields

Jp BN = R LR T s = e (7.3)

Simple direct rules for estimating the standard value pci on caustics and foci are
given by Keller (1958); a procedure for reading off the resulting sum u; from the
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Ppictures of classical Hamiltonian orbits in the configuration space, has been proposed
in the chemical literature (cf. Noid et al. 1979). :

The stationarity condition of the wavefunction then amounts to single out, among
the continuum of tori, Ji = arbitrary constants, i=1, 2, ..., f, a discrete subset, de-
fined by the actions (7.3). The integers

n = (n1, ny ..., nf) : (7.4)

are the quantum numbers specifying the stationary state. In the context of our treat-
ment *L is infinite, so that these numbers are infinite integers.

Recall now that integrable Hamiltonian when expressed in the angle-action vari-
ables depends on the actions alone (cf. egs. (2.11), (3.3)). Therefore, from equations
(7.3) we see the allowed frequencies of the asymptotic eigenvalue equation are given
by

*w(n) = F(Ji(n1), J2(n2)), ... , Ji(nf)) = FJ(n)) . (7.5)

Since the value of J(n) (eq. (7.3)) depends on the encounters of the rays with the
caustics, through the Maslov indices, it is important to have at our disposal a full
survey of the structure of the caustics. Moreover, since different ray families have in
general caustics of different structures, the Maslov corrections are different for the
frequencies attached to different ray families. We may state therefore that each ray
family has associated with it an asymptotic spectral branch. Or in the presence of p
families of rays there are p asymptotic spectral branches.

Since by assumption the Hamiltonian is a smooth function of the actions, we
may expand the latter expression with respect to the actions in the neighbourhood
of a reference set of eigenvalues, nref. The rescaled spectrum (6.8) then becomes

o = st (w(n)/w(nref))

=14+ Ax =14+ Atx1 + A2x2 +... +Arxf , (7.6)

with
Ai = st [9/adi FU)I=J(ref) (7.62)
xi = st [(ni - niref) | *o(nren)] . (7.6b)

These expressions show that in the space of the normalised quantum numbers xi and
close to the origin x;j=0, the rescaled eigenvalues define a plane. The values of the
coordinates x; themselves are continuous. v

Alternatively, we can construct the O-spacing function (6.11)

So(An,nref) = st [*w(nref+A4an) — *w(nref)]
= AAR . (7.7)

with
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An = st (n — nref) . (7.7a)

The latter expression requires that the differences between the quantum num-
bers n and nref, must be finite, even though the quantum numbers themselves are
infinite integers. This spacing function shows that the eigenvalues are evenly spaced
in each of the quantum numbers (in the neighbourhood of the reference quantum
numbers). Or in other words, a magnification by the infinite factor *w(nref) of the
plane (7.6) continuously filled with eigenfrequencies actually resolves the latter into
a discrete regular planar lattice of eigenfrequencies in a small region around the origin.
No dislocations in this crystal-like structure are permitted. The ’physical impurities’
of the complete wave equation can create ’dislocations’ — i.e. localised accidents in
the spacings — among the low lying levels only. If we fix all but one of the quan-
tum numbers and let the remaining one vary near its reference value, then the
(f-1)-parameter family of eigenvalues so defined is evenly spaced in the free quan-
tum number.

The above treatment demonstrates that the asymptotic frequencies of integrable
acoustic ray equations are not properties of individual rays; they are attributes of the
ray carrying tori.

The general result we have obtained can be summarised as follows. In the in-
tegrable case, all infinite i.e. asymptotic eigenvalues are locally evenly spaced in all
of their f quantum numbers. We shall refer to this characteristic feature as the reg-
ular spacing property. A collection of asymptotic eigenvalues obeying the regular spac-
ing property is called quantum regular. Accordingly, the whole asymptotic spectrum
of an integrable acoustic wave problem is quantum regular.

(B) Consider next a nonintegrable wave equation.

Just as for the acoustic ray propagation, we distinguish between two cases.

(a) In the regular region *R, which in general will be made up of disconnected parts
of the phase space *r', we have, just as for an integrable Hamiltonian, a dense cover-
age by resonant tori. We can therefore repeat the above discussion of the phase of
the wave function to determine the stationarity of the latter (eqs. (7.1)-(7.5)). The
only difference with the latter case is that the infinite quantum numbers n are de-
fined over certain ranges' only, namely those ranges which through equation (7.3) do
produce tori of the regular region.

Again, associated with each regular ray we have a distinct asymptotic spectral
branch, so that the existence of p regular families of rays implies the existence of p
asymptotic spectral branches. In general, the latter now differ not only in their Maslov
correction factor, but also in the actual functional dependence F(J), since the ’local’
integrals J now change from one family to the other.

We have again rescaled spectra of the form (7.6) and O-spacings obeying (7.7).
Therefore the asymptotic spectrum attached to the regular region of the phase space
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satisfies the regular spacing property. Hence this asymptotic spectrum is quantum reg-
ular.

(b) In the chaotic region *K of the phase space *r' we have no surviving tori. Since
we have seen that asymptotic frequencies appear as attributes of the orbit carrying
tori, there may be some doubt as to whether there are any asymptotic frequencies
at all related with the chaotic orbits.

The following argument shows that the existence of continuous families of tori
is not required for the existence of asymptotic eigenfrequencies. The density formula
(6.10), wich is independent of the geometry of the oscillating medium, recudes indeed
to Jeans’s classical result for wave equations with a space independent sound speed;
under the latter circumstance D is equal to the topological dimension f of the con-
figuration. Take in particular the two-dimensional oval configuration of Benertin and
Strelcyn (1978; cf. also Wojtkowski 1986); this ’billiard’ is known to be ergodic, i.e. it
possesses no regular families of rays. But since the frequency density formula con-
tinues to hold, the existence of eigenfrequencies is guaranteed; obviously, the latter
cannot be attached with families of tori.

It is natural to conjecture that these frequencies are in fact connected with ’ex-
ploded’ tori, namely the sets Mka*' (cf. Section 4) carrying the rays in the chaotic
region. We can immediately make a general statement about the distribution of the
asymptotic frequencies of the wave equation related to chaotic rays:

The collections of infinite frequencies attached with the chaotic region *Kc*I" are
not quantum regular.

In fact, if these frequencies were regular, they could, by definition be repre-
sented locally as functions of f integers n satisfying the spacing formula (7.7) and
playing therefore the parts of local quantum numbers; the latter in turn could then
be used to define classical action parameters via an equation of type (7.3) , namely
by setting n=]J + constant (the constant being actually irrelevant in the ray problem).
But this means that we are locally able to introduce a Hamiltonian depending on
actions alone, which implies in turn that we are in a regular region *R of the phase
space. This contradicts our starting hypothesis.

The characteristic feature of these sets of frequencies is that their spacings are
uneven and disordered; the previous crystal-like lattice structure (7.7) has collapsed
into the disordered structure of a liquid. A collection of frequencies, which is not
quantum regular, will be called quantum chaotic. .

It transpires from this analysis that the frequency ranges connected with the
chaotic rays are then quantum chaotic.

To indicate more explicitly how the irregularity in the spacing of the frequen-
cies comes about we consider the case of an associated ray problem with a single
integral J. We then take account of the fact that the chaotic region *K is densely
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filled with closed rays (not carried by f-dimensional tori). Let *C, *C’, ... then be
closed rays going through the neighbourhood of (+rk), and *C, *C’, ... their pro-
jections onto the configuration space. A wave concentrated around *C and repre-
sented by the ansatz (6.4) will be stationary, if the change of phase, as we go around
*C, is again a multiple of 2 . As above, this requires that the integral of the mo-
tion (action) J is the form (7.3)

J=1Jn) =n+ *wd |, (7.8)
where *u is again a measure of the phase shifts of the extra phase factor *e. If for
n=m, the value J(m) is associated with the closed orbit *C, and for the next in- '
teger n=m+ 1 the action J(m+1) is attached to the closed orbit *C’, then these
two orbits, as a consequence of the instability of the chaotic region *K, are entirely
different and uncorrelated; as a consequence, there is no reason to expect the corre-
sponding *u values to remain equal; the eigenfunction traverses different singulari-
ties as it follows uncorrelated paths.

The explicit form of equation (7.8) is therefore

J(n) = n + *u(n)/d4 ; (7.8a)

the precise value *u(n) is practically 'unpredictable’ , in the same sense and for the
same reason that we are unable to predict in the ray context which actual path in
the chaotic region will be followed, given initial conditions with a limited accuracy.

This situation is drastically different from the situation arising in the regular
region in the phase space; two sets of quantum numbers n’ and n” which are close
define two orbit carrying tori which are close as well; it is therefore always possible
to select corresponding irreducible circuits on the two tori which are sufficiently close;
the Maslov correction factors *u — being topological family indices — remain there-
fore the same over both orbits. They can differ only if we start with two tori belong-
ing to two different families. ;

For a given initial condition roks in the chaotic region *K c* carry out the
canonical transformation (4.3); let ¢o, o, Jo, Po be the initial conditions of the new
canonical variables. Let *C'be a closed orbit through this point (or passing arbitrarily
close to this point). By equations (4.4) and (7.8a) we obtain a branch of the frequency
spectrum

*o(n) = G(qo, po, n+ *u(n)/4) : (7.9)

As already mentioned, for f>2 the chaotic region is connected. Any classical solu-
tion diffuses all through the region. Equation (7.9) therefore covers the full spec-
trum attached to the chaotic rays.

For f=2 the regular families divide the chaotic region into disjoint chaotic zones
*M1, *M2, ..., *Mx ; each of the latter is covered by a generic solution. Under the
latter alternative, there are x branches of the spectrum attached to the chaotic so-
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lutions; branch b corresponds to the choice of an initial point in a chaotic zone *Mj,
Gl s iy, | X,
The d-spacing function (6.11) becomes

Sd(An, Nref) = St{ 'm(ﬂref)d[*w(Aﬂ‘Fnref) - *m(ﬂref)]} = Ad Aﬂ+f(Aﬂ) ,(7.10)

with
Ad = st{GY wa) G} (7.11a)
An = st (n - neef) . (7.11b)
f(an) = (1/4) st {GY /o] G [*u(nref+an) - *u(nref)]} . (7.11¢)

In these expressions G and 9/aJ G are to be computed at a reference orbit corre-
sponding to the asymptotic value nref of the quantum number. The exponent d is
to be selected such as to secure the existence of expression (7.11a). The local spac-
ing is then composed of an even spacing, Ad An, plus the contribution f(an) which
according to our previous discussion depends erratically on the finite integer An.

As is seen from these considerations, a single global quantum number n sur-
vives for any quantum chaotic collection of frequencies. This quantum number may
be interpreted as an (absolute) ordering parameter of frequencies (cf. eq. (6.9)). Be-
sides, additional exact quantum numbers may exist; if the ray Hamiltonian admits of
r (<f) independent integrals, the number of quantum numbers is seen to be equal
to . We may say then that quantum chaos is the result of an insufficient number
of quantum numbers specifying the frequency eigenvalues.

In spite of the fact that we do not possess a complete set of quantum num-
bers to characterise the eigenvalues in the quantum chaotic ranges, it is always possible
to attach a complete set of f pseudo quantum numbers p to the actual eigenvalues.
To this end it suffices to regard the actual acoustic eigenvalue problem as a pertur-
bation of an integrable eigenvalue problem. In the stellar context, the natural refer-
ence configuration is the spherically symmetric star, which is indeed integrable. Identify,
i.e. label, the eigenfrequencies of the distorted configuration under consideration by
the quantum numbers (n, /, m) of the spherically symmetric comparison star via some
operationally well defined rule. A natural way of doing so is through a homotopic
deformation of the spherical structure, Ssph , into the deformed structure, Sdef.
Schematically '

S(n) = mSdef + (1-m)Ssph, m e [0,1} . (7.12)

For = ranging from 0 to 1, S(n) represents a fictitious structure which goes con-
tinuously from the spherical (y=0) to the actual structure (n=1).

If w(p) denotes the spectrum of eigenvalues of the integrable configuration,
Ssph, these eigenvalues being identified by their quantum numbers p, then we write
the eigenvalues of the formal structures S(n) as w(p,m); regarded as a function of
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m , the latter symbol is understood as a smooth function (of class Cl[O,l]) (with
o(pn=0) = o(p)). The quantum numbers of the spherical star, p, then serve the
purpose of labels, or pseudo quantum numbers p of the distorted star. Notice that
the assignment of pseudo quantum numbers to a non integrable wave problem de-
pends on the precise choice of the homotopy (7.12); two different homotopies may
produce different identifications of the eigenvalues of the deformed structure by
means of the same pseudo quantum numbers.

Our discussion implies that the quantum chaotic branches of the asymptotic
spectrum cannot obey the regular spacing property in the pseudo quantum numbers
p. The spacings are irregular in the space of the pseudo quantum numbers
Ap = p—pref.

The converse of this pro'perty, namely that an irregular spacing in one pseudo
quantum number — at fixed remaining pseudo quantum numbers — implies quan-
tum chaos, requires a few specifications. If the free pseudo quantum number mixes
up several branches of regular frequencies, an apparent disorder in the frequency
distribution may be created, due to a switch over from regular family to another. A
careful examination of the regular branches of frequencies is therefore needed before
one can draw a conclusion on the existence of quantum chaos from a limited spec-
tral sample. Only in the case of a very extended series of frequency data is a frequency
versus free pseudo quantum number plot sufficient to reveal the individual frequency
families directly.

Provided that one exercises a sufficient amount of care, an examination of the
spacing of the frequency eigenvalues as a function of one pseudo quantum number
does enable one to differentiate between quantum regularity and quantum chaos.

8. A few illustrations

Although the above theoretical considerations refer to ideal infinite eigenvalues
only — which are beyond our reach — the real practical interest of the conclusions
drawn from our nonstandard formulation, is, as stressed by Harthong (1981), that the
latter remain applicable approximately to finite, sufficiently large, acoustic eigenvalues.

For instance the property of uniform spacing of the infinite frequencies of a
given regular family (7.7) then translates into a property of smooth spacing in the
large quantum numbers; this means that a spacing in one free quantum number g
can be represented as

So(Aq,qref) = w(qref+Aq) — w(qref)

= ao + a1 Aq + azlqu T A (8.1)
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where q=qref+Aq is the free quantum number, the remaining f-1 quantum num-
bers being held constant; the coefficients ao, a1, a2, ... depend on the large refer-
ence value of the free quantum number g, as well as on the fixed values of the
remaining quantum numbers. We have sketched elsewhere a graphical method ex-
ploiting the Moiré effect to exhibit the smoothness of the spacing (Perdang 1984).
The validity of a formula of type (8.1) secures in turn the existence of a conven-
tional ’asymptotic expansion’ of the families of frequencies in one (or more gener-
ally f) quantum number(s).

The property of uneven spacing of a given quantum chaotic family of finite
frequencies translates into the statement

So(ap,pref) = w(pref+4p) — w(pref) nowhere smooth in Ap , (8.2)

p=pref+Ap being a free large pseudo quantum number, the other f-1 pseudo quan-
tum numbers being held fixed; an expansion in a power series in Ap is then not al-
lowed at the reference value pref .

We shall briefly consider a few applications of the tests embodied in the state-
ments (8.1) and (8.2) to theoretically computed acoustic solar models on the one
hand, and observed solar modes on the other hand.

The acoustic modes of a conventional solar model of spherical symmetry com-
puted by Scuflaire et al. (1981) have been analysed for regularity of their spacings
in the regular quantum number n. This spectrum is theoretically known to be quan-
tum regular, irrespective of the physical ingredients of the model.

We discuss here only the results for the family of fixed quantum number /=1
and for n in the range 16 to 27, which are displayed in Figure 6 in the following
form.

(a) A linear interpolation of the computed frequencies v(n) produces the ex-
pression

v(n)inn = 229.31 + 136.33 n (pHz) : (8.3)
the residuals
Aavi(n) = Vint1(n) - v(n) (8.3a)

are seen to distribute on a parabola (Fig. (6.a)).
(b) The quadratic interpolation yields
vin2(n) = 302.85 + 12931 n + 0.16 n° (WHz) | (8.3b)
and produces indeed residuals av2(n) which apparently are random fluctuations, of
the order of 0.1uHz. It seems clear that these fluctuations just represent numerical

noise. Interpolations by polynomials of higher degrees fail to remain consistent with
the polynomials of degree 1 and 2, leading to expansion coefficients ao and ai,
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which differ completely from those of expressions (8.3, 8.3b); the corresponding re-
siduals remain basically of the same order as the residuals ava(n) .

(a)
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Fig. 6. Behaviour of a regular spectrum of acoustic modes: computed p modes
of a conventional solar model at fixed spherical degree /=1 and for radial
orders n =16-27 (Scuflaire et al. 1981); (a) residuals of a linear interpolation;
(b) residuals of a quadratic interpolation.

Our experiment demonstrates how the presence of noise in the frequency spec-
trum, whether in the form of numerical errors or observational noise, manifests it-
self in an irregular spacing of the frequencies. We have argued elsewhere that noisy
component might, in principle, be distinguished from an intrinsically irregular spac-
ing (Perdang 1986).

We should of course keep in mind that the frequency range we are referring
to must be regarded as a poor approximation to ’infinite’ eigenvalues; it is surpris-
ing that in this range of low quantum numbers, where the frequencies might have
been expected still to suffer contaminations by the complexities in the physics of the
sun, the only obvious irregular effect is noise. The theoretical property of regularity
of the infinite acoustic frequencies of spherical stellar models seemingly reaches down
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into frequency range of relatively low radial quantum numbers n. In very simple
models, such as the model of homogeneous density, it has been demonstrated to
hold over the whole acoustic spectrum. :

The same method has been applied to the analysis of the full disk solar oscil-
lations as recorded by the SMM satellite over a continuous period of 280 days (cf.
Woodard and Hudson 1983).

The identification of the observed eigenfrequencies cannot be made by the ho-
motopic procedure (7.12) which is applicable to theoretical eigenvalue problems only.
The method adopted here is to compare the spectrum of the observed frequencies
wobs(q) (g, the ordering parameter) with the spectrum of the theoretical frequen-
cies wm(p) of a presumably adequate (spherically symmetric) solar model. Then
mode wobs(q’) is identified by the pseudo quantum number p’ provided that

min(p] | @obs(q’) ~@th(p) | realised for p=p’ . (8.4)

While theoretically less satisfactory than the homotopic identification, this iden-
tification is the only one we can apply here, in view of the limited a priori infor-
mation on the ’real’ solar model. We present the results of the analysis of the family
of frequencies of fixed pseudo quantum number /=1 and for n in the range 18 to
24, i.e. a branch of frequencies similar to those of the theoretical model mentioned
above.

(a) The linear interpolation of the observational frequencies v(n) leads to the
expression

Vimi(n) = 259.75 + 13520 n (uHz) e (8.5)

the residuals Avi(n) are seen to deviate significantly from a parabola (Fig. 7a).
(b) The quadratic interpolation yields

vina(n) = 30251 + 131.09n + 0098 n* (uHz) (8.52)

with residuals 4Ava(n) which apparently show important fluctuations, of the order
of several times 0.1uHz at n=19 and n=22 (Fig. 7b); the standard deviation of the
residuals is 0.21.Hz; this value is significantly larger than the intrinsic precision of
an individual frequency resulting from the finite run time of the observations
(~0.05.Hz).

According to our theoretical considerations of the previous section it is not im-
possible that the apparent disordered distribution of the residuals could be inter-
preted as quantum chaos, and therefore as the result of nonspherically symmetric
effects in the equilibrium structure of the sun. But it cannot be ruled out either that
the modes n=19 and n=22 belong to another regular branch. Both interpretations
require a breaking of the conventional spherical symmetry (& ~ 10‘5).
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F;‘g. 7. Behaviour of the acoustic solar modes as observed by SMM satellite
(Woodard and Hudson 1983); the modes plotted are identified as /=1 and
n = 18-24; (a) residuals of linear interpolation; (b) residuals of quadratic inter-
polation.

In principle, the latter may consist in large scale deformations of the surfaces
of constant sound speed (for instance due to the solar rotation, and possibly an ac-
companying large scale circulation); we should keep in mind that even if the oblate-
ness in the solar density distribution is estimated to be <107 (Gough 1984) the
temperature distribution, which enters more directly in the sound speed, might show
a larger deviation from sphericity.

It does not seem likely, however, that this tiny geometrical effect can generate
quantum chaos on an observable scale; our numerical experiments on ray propaga-
tion in globally deformed stars make it clear that ray chaos is produced over a sig-
nificant range in the parameter space of initial condition only if the distortion of the
star itself is large enough (e and g of the order of 0.1); only then do we expect
quantum chaos to arise over a noticeable fragment of the spectrum. Alternatively,
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small deviations from spherical symmetry, such as the presence of a convection zone,
could be responsible for generating a large chaotic region K in phase space.

In fact, local deviations from sphericity may deform the surfaces of constant
sound speed into nonconvex surfaces; the analogy with billiards then suggests that
the majority, if not all rays become chaotic. The precise role of ray propagation in
the presence of nonconvex surfaces of constant sound speed remains to be studied.

9. Some numerical results on the acoustic spectrum of pear-shaped stars

In this final section we briefly report on the numerical solution of the acous-
tic eigenvalue problem (2.7). For further details we refer to Perdang and Nejad
(1987).

To introduce pseudo quantum numbers of the oscillation eigenstates the follow-
ing procedure can in principle be applied. We set

ap = 1-€¢ 9.1)
so that equation (5.13) takes the form
RZ=1 4+ f(r,0,68 , ' 9.2)

with f(r, ©, e, B) a known function linear in the parameters e and p . Under the
substitution

e—>ne and B8 (9.3)
we therefore generate a relation defining a homotopy (7.2) in the form
R = 1% + of(r, 0,6, 8) , nel[0]] . (9.2a)

Pseudo quantum numbers for the eigenfrequencies of the pear-shaped configu-
ration can then be introduced via this homotopy relation.

The method of solution proceeds as follows.

(a) For n=0 the (spherically symmetric) eigenvalue problem can be solved an-
alyticallly; the corresponding eigenvalues are

w(P)? = (o(n, [, m))® = dn(n+1+172) , (9.4)

where p=(n, /, m) stands for the conventional quantum numbers of the sphere;
the symmetry implies that these eigenvalues are m-independent and therefore (2 +1)
times degenerate. Note that the density law (6.10) of this spectrum is characterised
by a spectral dimension D=4.5 . We shall denote the eigenfunctions corresponding
to the eigenvalues (9.4) by ®p . This set of eigenfunctions is complete.

(b) To study the deformed configurations (n=1) we carry out the following
mapping. We associate with the point P, of Cartesian coordinates (x7, x2, x3) and
spherical coordinates (r, ©, ¢) (eq. (5.3)) in the physical configuration space, a point
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P’ in a fictitious space, of Cartesian coordinates (x;, x2, x3') and spherical coordi-
nates (R, @, ¢)
x1’ = R cos & ,

x2' = R sin @ sin ¢’ ; 9.5)
x3' = R sin © cos ¢’ :
with
Ol =2 @ % = bt RU=CR(E 6% d) X (9.5a)

The latter relation is explicitly given by the equation of the surfaces of con-
stant sound speed (egs. (5.2), (5.13)). The mapping
M: PI|-P (9.6)
transforms any point P inside the star (of arbitrary geometry) in the original con-
figuration space, into a unique image point P’ in a fictitiuos space in which the sur-
faces of constant sound speed become concentric spheres; in particular the image of
the surface of the star becomes a sphere (Fig. 8). The relevance of this mapping is
that it transforms the original eigenvalue problem (2.7) over a star of arbitrary
geometry into an eigenvalue problem over a spherical configuration. Of course, the
price to be paid for the geometrical simplification of the configuration is an increased
complexity of the transformed Hamiltonian

M: k> |- W(R, 0, ¢; a/oR, 0700, o/ad)* 9.7)

N N’

P o
R
o
r -
0

__/ '\ R = R(r,8,0)

S S

Fig. 8. Defining the mapping r, 8, ¢ | - R, @, ¢, from the physical configu-
ration space of the star into a fictitious configuration space in which the sur-
faces 0? constant sound speed are concentric spheres; since ¢ =¢, the
transformation is shown in a symmetry plane only.
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The one-to-one character of the transformation (9.6) breaks down when the
surfaces of constant sound speed cease to be convex. Convexity is virtually unavoidably
lost in localised deformations, which are relatively large over small fractions of the
star.

In the new coordinates any eigenfunctions ¥ of the wave equation can be
expanded in the set of eigenfunctions ®p of the spherical configuration

V[R(r, 6, ), 6, ¢] = Zp ap p(R, O, ¢) | (9.8)

where the summation extends over all values of the triplet of the quantum numbers.
The coefficients ap are the new unknowns of the problem. Substitution of the ex-
pansion (9.8) into the transformed eigenvalue equation, and operation by jv,dv’/C(R)q)p'
where dV’ and V’ are the volume element and total volume in the fictitious space,
produces a conventional matrix eigenvalue problem of the form

(M=-u’E)a =0 9.9)

here M denotes the matrix of elements Myp'p describing the transformed LHS of the
eigenvalue equation; E denotes the unit matrix; and a denotes the array of coeffi-
cients ap of the expansion (9.8).

It is found that the eigenfunctions corresponding to different azimuthal quan-
tum numbers m’, m do not couple; accordingly the quantum number m of the
sphere remains a genuine quantum number of the deformed configuration. This is a
consequence of the preserved symmetry of revolution, which implies a conservation
law (a second global integral), and therefore a second exact quantum number. In
contrast, the eigenstates of different harmonic degrees ’, / do couple. It can be seen
that this coupling generates an avoided crossing between pairs of eigenvalues of
different (pseudo) quantum numbers / under changes of distortion parameters. It is
ultimately the all-pervading presence of avoided crossings —or avoided resonances —
between pairs of modes of pseudo quantum numbers (n}/’) and () in the asymp-
totic spectrum which produces the disorder in the level spacing typical of the chaotic
spectrum. ‘

Although avoided crossings may and do arise in general regular spectra as well,
the main difference with the chaotic avoided crossings is that in regular branches
the avoided resonance necessarily occurs between modes differing by one quantum
number only; accordingly, the avoided crossing is — like a crystal dislocation — an
accidental and localised happening. Moreover it is necessarily confined to the low
lying levels of regular families.

When the one-to-one correspondence in the transformation (9.6) breaks down,
the analogy with billiards suggests that ray chaos is turned into the dominant phe-
nomenon; indeed the Hamiltonian ray equations may define a K-system. The alge-
braic representation (9.9) of the spectrum is expected to involve a matrix M whose
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off-diagonal elements are essentially ‘random’. Accordingly, the well known eigen-
value theory of random matrices should then become applicable.

The explicit calculation of the matrix elements requires a double numerical in-
tegration over R and ©, and is therefore exceedingly time consuming. For this rea-
son we have so far been constrained to work with small-sized matrices (18x18 or
25x25). Furthermore, we have carried out the calculations only for oscillation states
of quantum number m =0. The latter are associated with the families of planar rays
studied in Section 5.

w(n,2)

2+ v

T

0 5 10 15 L

Fig. 9. Fan diagram of the acoustic modes of a nonspherical star of deforma-
tion parameters €=0.2, p=0.1, for the pseudo quantum numbers n=1, 2, 3
and /=0-15. The diagram shows the same general shape as for spherical stars;
the individual modes scatter around the frequencies of the nonperturbed spheri-
cal configuration.

The numerical results are summarised in Figures 9, 10, and 11. In Figure 9 we
show a plot of the frequencies of pseudo quantum numbers n=1, 2, 3 and / in the
range 0 to 11 for configuration of elliptic deformation parameter e=0.2 (eq. (9.1))
and cubic deformation p=0.1 . We mention the close similarity of this diagram with
the solar frequency-horizontal wavenumber plots of the type first produced by Deubner
(1975); notice that in contrast with the theoretical frequencies of spherically sym-
metric equilibrium models, the individual frequency values do not follow a precise
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regular fanlike pattern; like the observed solar frequencies, the theoretical values
found to scatter around an average regular pattern, namely the frequency pattern
(9.4) of the symmetric model.

(a)

Av,(n) x 1000
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1 t + T T t t
-2 0 2 4 6 8 10 12 14 16

(b)

Av,(n) x 1000

200

100

Fig. 10. Behaviour of the acoustic oscillation modes in a configuration of defor-
mation parameters e=(0.2, p=0.1; the pseudo-quantum numbers of the modes
are n=1 and /=0-15; (a) residuals of the linear interpolation; (b) residuals of
the quadratic interpolation. Modes /=4 and /=10 are not smoothly connected
to the neighbouring modes.

Figure 10 describes the regularity test of the collection of modes of pseudo
quantum numbers n=1 and / in the range 0 to 15, again for the deformed configu-
ration €=0.2 and B=0.1. Figure 10a shows the residuals of the linear interpola-
tion, suggesting that modes /=4 and 10 do not follow the regular pattern; Figure
10b showing the residuals of the quadratic interpolation confirms this result. A closer
examination of the numerical results indicates that the mode (n=1, /=4) suffers an
avoided crossing with the mode (n =2, [ =0), while the mode (n =1, /=10) is likewise
in approximate resonance with (n=2, / =3). It seems justified to regard these modes
as belonging to a chaotic family of frequencies for the following reason. The ray
propagation in ellipsoidal and pear-shaped stars discloses the existence of the SR



259

and MAR families, with the CR family arising out of their common boundary FR
(cf. relations (5.10, 5.15)); the frequencies attached with the MAR family have
manifestly relatively lower spherical degree ! and higher radial radial order n; while
those connected with SR have higher spherical degree [ and lower radial order. There-
fore quantum chaotic frequencies will arise as an interaction (materialising as an
avoided crossing) between both types of modes. The two pairs we have traced seem-
ingly obey this stipulation.

(a)
Au,(n) x 1000

400

2004

04

-200

-400 + + + = +
-2 0 2 4 8 8 10 12

(b)
Av,(n) x 1000

300

2004
1004

04
-100 4

-200

-300 t + + + + t
-2 0 2 4 6 8 10 12

Fig. 11. Behaviour of the acoustic oscillation modes in'a star of nonspherical
equilibrium structure of deformation parameters e=0.3, p=0.2; the pseudo
quantum numbers of the modes are n=1 and / =0-11; (a) residuals of the linear
interpolation; (b) residuals of the quadratic interpolation. Modes /=0 and /=4
are not smoothly connected to the neighbouring modes.

Figure 11 finally gives the result of the application of the regularity test to
modes of pseudo quantum numbers n=1, and /=0 to 11, in a strongly deformed
configuration ( e=0.3 and =0.2). The residuals of the linear interpolation are
displayed in Figure 11la, indicating that modes /=0 and 4, as well as perhaps the
higher end of the branch do not follow the regular pattern; the residuals of the
quadratic interpolation given in Figure 11b are consistent with this conclusion. The
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mode (n=1,/=0) does not interact with any other frequency, so that this mode can-
not be interpreted as belonging to the quantum chaotic frequency branch; in fact,
this mode must belong to a regular family, since we have found that its special be-
haviour survives in the integrable ellipsoidal case (B =0); we presume that it is to
be regarded as a frequency attached to the regular MAR family. On the other hand,
the mode (n=1, /=4), just as the mode of same identification in Figure 10, is res-
onant with (n =2, I=0), and is therefore to be interpreted as belonging to the quan-
tum chaotic branch. The modes towards the higher / values of our diagrams show a
more random looking deviation from regular curve; this suggests that quantum chaos
is a more frequent occurrence as we progressively go towards higher frequencies.

According to our theoretical analysis, quantum chaos and regularity of the
frequency spectrum are concepts rigorously applicable to the ’infinite’ frequencies
only. For want of numerical information on the high frequency range we have been
forced to extrapolate these concepts to the lowest section of the spectrum. We believe
that this extrapolation does remain meaningful in our specific case, since we are
dealing with a very simple acoustic wave equation obeying a trivial scaling invariance
(cf. eq. (5.5)). For realistic stellar wave equations such a game is not allowed; in
genuine stars we have to take care that we are working with high enough oscillation
states, and extended spectral ranges. The purpose of our admittedly academic illustra-
tion is to provide a preliminary survey of the qualitatively novel features we have to
expect in the asymptotic range of realistic high stellar acoustic frequencies.

10. Epilogue

In this paper we have sought to demonstrate the direct correspondence between
acoustic ray propagation and the spectrum of acoustic eigenfrequencies in stars, under
the conditions of an underlying steady state lacking rigorous spherical symmetry. Our
main result is that the spectrum of frequencies can be partitioned into distinct
branches, each one being associated with a specific family of rays. Therefore we have
been led to carry out a closer examination of the different ray families encountered
in distorted stars. By the same token, we have made an attempt at understanding
the genealogy of these families out of the trivial ray families of a spherical star.

The correspondence between ray and spectral families predicts a spectral branch
whose properties differ radically from the properties of the familiar acoustic spec-
trum of spherical stars. This new branch — the quantum chaotic branch — is the
spectral counterpart of the phenomenon of ray chaos. Perhaps the most surprising
feature of the quantum chaotic frequencies is the fact that they cannot be captured
by an asymptotic representation formula; the individual levels are highly sensitive to
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the parameters characterising the geometry of the star, thus defying any smooth
asymptotic ansatz.

A tentative first step only towards an understanding of the spectral families in
nonspherical stars, our approach, instead of settling an astrophysical problem, actu-
ally raises a whole variety of questions: So far only planar ray families in configura--
tions preserving a Cowy symmetry have been studied. Even among the latter, our
information on the structure of the allowed caustics remains fragmentary. A precise
knowledge of the caustics is required to compute the Maslov correction factors in
the asymptotic frequency representations of the regular families. The nontrivial prob-
lem of reexpressing the ray Hamiltonian in the ’local’ integrals (F(J), eq. (3.3)),
thereby producing a generalised Birkhoff normal form, has not been investigated
either; such a form is needed for the explicit construction of the asymptotic frequency
formulae.

A systematic study, both analytical and numerical, of the onset of quantum
chaos is also lacking. We have found that for small deformations the measure of the
chaotic zone in the parameter space of the initial conditions (5.6), although nonzero,
remains small; it is not clear whether the occurrence — or the observability — of
quantum chaos sets in at arbitrary small deformations, or whether it requires some
finite threshold deformation. Perhaps the analogy between spectral regularity and
crystal order, on the one hand, and spectral chaos and liquid disorder on the other
could help clarify this point, possibly through a thermodynamic analysis of the (phase)
transition from regularity to chaos in the frequency spectrum.

A detailed investigation of the structure of the eigenfunctions of the chaotic
states is also missing. A knowledge of the shape of the eigenfunctions is vital for
astroseismological purposes — and astroseismology is ultimately the practical justifi-
cation for our interest in stellar oscillation spectra. In order to hammer out infor-
mation from a set of measured frequency data, about the physical conditions prevailing
say in the core of the star, the eigenfunctions associated with these frequencies must
have significant amplitudes in the core. To some extent the ray patterns do already
reflect the behaviour of the asymptotic eigenfunctions. Only those zones actually vis-
ited by the rays can have nonvanishing amplitudes; and the amplitude becomes large
near points where we notice an accumulation of rays. These remarks are already in-
dicative that the chaotic frequency branch, since it is associated with rays traversing
the whole body of the star, should be especially relevant for exploring those regions
which are not easily accessible to the regular acoustic rays.

At the moment nothing is known about the acoustic spectrum of stars devoid
of any symmetry. We may conjecture, however, that spectral chaos then produces an
even higher degree of disorder. In the algebraic formulation (9.9) interactions, i.e.
avoided crossings, between oscillation states of different triplets of quantum numbers
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(n, [, m) and (n’, I, m’) being now allowed, are obviously easier to materialise than
avoided crossings between states of same azimuthal quantum number.

As a final point, I wish to emphasize that if we have an extended range of ob-
served acoustic eigenfrequencies of a star at our disposal, and if we are able to dis-
tinguish different branches of frequencies, then we can make inferences on the possible
geometries of the star; in this sense, spectral branches play a qualitative role simi-
lar to the classical mode splitting. On the quantitative level we can formulate an ex-
plicit inverse problem in the framework of the matrix eigenvalue problem (9.9).
Without special effort the matrix formalism can be extended to the complete acous-
tic eigenvalue problem of deformed stars. Regarding the surfaces of constant sound
speed as parametrised by equation (5.2), we observe that the algebraic formulation
(9.9) implies that

dtm {M[AL, Dim™) —0obs(@)’E} =0  ,q =12 .., N (10.1)

for each observed frequency wobs(g). Under the assumption that the physics of the
star is fully known, and that N observed frequencies are available, equations (10.1)
define a system of N constraints on the parameters AL , Dim™ . Therefore we have
the possibility of estimating a number N’ (sN) of independent parameters of the
geometry of the star.

The author wishes to thank D.O. Gough for critical comments and L. Nejad
for numerical assistance. He also thanks the members of the Institute of Astronomy,
Cambridge, for the hospitality extended to him, as well as the Royal Society for- the
grant of a European Exchange Fellowship.
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CHAOTIC PULSATIONS IN STELLAR MODELS

J. R. Buchler
University of Florida, Department of Physics, Florida, Gainesville, USA
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-Abstract

Numerical hydrodynamical studies of sequences of Population II
Cepheid models reveal two well-known types of universal routes from reg-
ular to chaotic pulsations as the effective temperature is lowered; these
are the period-doubling bifurcation sequence and the tangent bifurcation.
Depending on their behavior these models would be classified as W Vir-
ginis, RV Tauri or Semi-Regular. We wish to stress that the techniques
used for the analysis of the numerically generated luminosities and radial
velocities could also very fruitfully be applied to observational data of this
type of stars if the latter were gathered in a more suitable fashion.

There are at least some superficial indications of period doublings and chaos
as well as intermittency among the classical intrinsic variable stars. For example, pe-
riod doubling seems to manifest itself as so-called RV Tauri behavior; this is an al-
ternation of shallow and deep minima in the light curves of certain W Virginis and
RV Tauri stars, alternations which can be regular or irregular (e.g. Tsesevich 1975).
At the same time fluid experiments, chemical reactions and many other nonlinear
phenomena have been found to undergo typical routes from regular, periodic to ir-
regular chaotic temporal behavior. It seemed therefore natural to us to explore
whether astrophysical fluids such as pulsating stars, would exhibit similar behavior. It
should, however, be obvious that their physical complexity is far greater than that of
the laboratory systems which have been studied or that of the usually studied low-
dimensional systems of equations, such as the Lorenz attractor, in which similar be-
havior is found. ‘

Irregular behavior is commonly classified as noisy or chaotic depending on the
number of degrees of freedom which are involved. Chaos is said to occur when the
latter is small, and its interest lies in the fact that we can hope to find a relatively
simple physical mechanistic as opposed to stochastic model for the observed behavior
and thence gain a deeper understanding of the underlying dynamic. Unfortunately
most of the currently available observational data are not suitable for an analysis
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with the modern techniques of nonlinear dynamics. At the present time we there-
fore have to resort to numerical hydrodynamical modelling to understand the tem-
poral behavior of the pulsations of these stars. Because of the cost of the numerical
hydrodynamical integrations we are necessarily limited in the parameter studies we
can afford. In the interpretation of the behavior of the models we therefore heavily
lean on the experience gained from the study of very simple systems and mappings.

A fairly extensive recent survey of luminous Population 11 Cepheids has shown
that the pulsations of these models undergo two well-known universal routes from
periodic to chaotic (aperiodic) behavior as a control parameter (in our case the ef-
fective temperature) is varied. In a lower luminosity sequence Buchler and Kovdcs
(1987) found a typical Feigenbaum series of period doubling bifurcations followed by
chaos. In another recent publication Buchler, Goupil and Kovdcs (1987) describe the
pulsations of luminous Population II Cepheid models which exhibit intermittency, i.e.
streches of regular behavior interrupted by erratic bursts; they identify a tangent bi-
furcation as being responsible for this behavior. The full survey of sequences of Popu-
lation 11 Cepheids is discussed in Kovdcs and Buchler (1988). Since our discovery of
period doubling and tangent bifurcation in stellar models Aikawa (1987) has inde-
pendently found similar tangent bifurcation in a sequence of somewhat more mas-
sive Population 1T Cepheid models as well. (We refer the reader who is unfamiliar
with the language of chaos to the beautiful introduction by Bergé, Pomeau and Vidal
1986; see also Buchler, Perdang and Spiegel 1985).

It is interesting to note that RV Tauri-like as well as irregular behavior in
radiative W Vir models has sporadically reporied in the literature, but that it has
never received any systematic attention, perhaps for want of a theoretical framework
within which to interpret and understand such behavior (Christy 1966; Davis 1972,1974;
Fadeyev 1984 Fadevev and Fokin 1985; Bridger 1984, 1985; Tuakeuti, Nakata and
Aikawa 198S; Nakata 1987). 1t should be stressed that the two discovered universal
routes to chaos are very common phenomenon in Population 11 Cepheid models and
that their occurence is robust with respect to physical and numerical parameters. The
survey of Kovdcs and Buchler (1988) shows the following systematical behavior of
model sequences for a given mass, luminosity and composition as the control para-
meter, the effective temperature, is lowered:

(i) In the low-luminosity sequences the fundamental periodic pulsation remains
stable down to very low effective temperatures. for more luminous sequences two
qualitatively different types of behavior are observed:

(i) for an intermediate luminosity range pulsations of increasing complexity
arise which are due to period doubling bifurcations and end up as chaotic as the ef-
fective temperature is lowered:; further on one observes typical noisy reverse period
doubling bifurcations,
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(iii) for the most luminous of the model-sequences the periodic oscillations are
interrupted by irregular bursts which become increasingly frequent as the effective
temperature is lowered until the motion is chaotic.

The hydrodynamical behavior of the models is studied with a slightly modified
version of Stellingwerfs (1974, 1975) 1-D Lagrangean hydro-code. Heat transport is
assumed to occur solely through radiative diffusion. For numerical purposes the mod-
els are discretized into N mass-shells (N =60). Since each mass-shell is characterized
by a radius, velocity and entropy (or any other thermal variable) the phase-space of
our discretized approximation to the partial differential differential system of hydrody-
namics has therefore a dimension of 3N (=180). We use 200 equal time-steps per
linear fundamental period.

We shall briefly describe here the dynamical behavior of two selected stellar
models both of which behave chaotically, but which have entered the chaotic regime
through the two different routes. The chosen stellar parameters, namely the masses,
luminosities, compositions and effective temperatures are those of cool Population II
Cepheids. They straddle what observers would classify as W Vir, RV Tauri or Semi-
Regular stars.

Before embarking on a discussion of the interesting behavior of the two mod-
els, in some detail we shall give the reader a brief glimpse of one of the techniques
which have been developed for the analysis of chaotic signals, especially since they
should also be very useful for the analysis of observational data. One such technique
which has by now become commonplace is u phase- space reconstruction (Packard et
al. 1980; cf. Berge et al. 1986). Consider a given ’signal’ {x; =x(1;)}, which can be any
one of the dynamical variables of the system or any suitable function thereof and
which is sampled at equally-spaced epochs t; . From this sequence we construct
the ’vectors’ X; =(xj, Xi+k Xi+2k - Xi+m-1)k) Which trace the trajectory in an m-
dimensional embedding space. The quantity k is a delay which is necessary to spread
the attractor away from the diagonal in a densely sampled signal. The interest of
this study rests on the fact that the topological properties of the reconstructed at-
tractor are the same as those of the original attractor. If the dimension of the chaotic
attractor is d, (noninteger), then it can be shown that the attractor can be embedded
in a (2d + 1)-dimensional space, where d is the integer part of dy augmented by
unity. It appears that for most real-life attractors it is sufficient to use an embed-
ding space of dimension d. In practice one thus embeds the attractor in spaces of
increasing dimension m until there is no longer an intersection of orbits. It is clear
that if this dimension turns out to be very large then the procedure becomes not
only very cumbersome, but there does not seem much point in studying such a com-
plicated high-dimensional attractor as little physical insight can be gained from this
study. Many observed attractors have been found to be low-dimensional (e.g. Bergé
et al. 1986).
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Model 1 has a mass of 0.6, a luminosity of 200, both in solar units, a composi-
tion of X=0.745 and Z =0.005 and an effective temperature of 4206 K. All the lincar
modes of the model are stable except the fundamental.

The temporal variation of the surface radius and of the radial velocity for this
model are shown in Figure I.
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Fig. 1. Temporal variations (a) of the surface radius (in units of 10! c¢m) and
(b) of the (radial) surface velocity (in km/s) of Model 1. The time is in days.

The signal seems to have a well defined period but the amplitude is 'modu-
lated’ in a very erratic way with RV Tauri (alternating) characteristics. A Fourier
amplitude spectrum, shown in Figure 2, confirms the fairly sharp periodicity (as-
sociated with the fundamental frequency of oscillation). It exhibits also the large first
subharmonic and displays an additional second subharmonic structure. The harmon-
ics, on the other hand, are very weak indicating rather weak nonlinearity. The peaks
are not sharp. In fact, for a chaotic signal finer and finer resolution with a longer
data-base would reveal more and more structure to the peaks, ad infinitum. A Four-
ier analvsis is generally not a very appropriate tool for the analysis of irregular sig-
ials. We therefore turn to another technique of analysis mentioned above.
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Fig. 2. Fourier amplitude spectrum of the radius variation of Model 1 (frequency
in 1/day).
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Fig. 3. Projection of.the trajectory onto the surface radius - radial velocity
plane.

We start with an analysis in 2-dimensional space. Instead of a 2-dimensional
phase-space reconstruction, Le., a plot of Xi , constructed with the surface radius, we
present in Figure 3 a topologically equivalent reconstruction, namely a plot of (x;,
dxi/dr). As expected, the trajectories intersect in this 2-D plot (since a chaotic attrac-
tor cannot be embedded in a two-dimensional space). Since Figure 3 is not a totally
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disordered mess, so that one can already suspect that there is some low-dimensional
structure to the attractor.

Three-dimensional reconstructions for the 6 models of Buchler and Kovdcs (1987)
are shown in Figures 4a and 4b which correspond to two different rotations of the
trajectory. Model | here is essentially equivalent to model f of the previous refer-
ence. An amazingly simple structure appears which might suggest that the dimen-
sion of the last two chaotic attractors is less than 3.

The computation of the fractal dimension (e.g. Grassberger and Procaccia 1984)
of the attractor of this model could, in principle settle this question. We have not
performed such a computation for this particular model, but for a very similar, neigh-
boring model, Buchler and Kovacs (1987) computed the dimension to be approxi-
mately 2.5 (an accurate determination is not possible with the short timespans of
integration to which we are limited). The evidence is thus strong that the chaotic
attractor is indeed embeddable in 3 dimensions. The dynamic should thus be para-
metrizable with three generalized coordinates which have to satisfy three differential
equations. This is a remarkable result since, we recall, our phase-space has a dimen-
sion of 3N (= 180).

Some well studied systems of three coupled nonlinear equations, such as the
Lorenz system or the Rassler system, give rise to one-dimensional return maps be-
cause the system of equations is strongly dissipative. It is therefore of interest to see
whether this additional contraction also exists in our reduced system. From a signal
{xi} one-dimensional return maps can be constructed in a number of ways. One
method consists of performing Poincaré sections in a 3-dimensional phase space and
then constructing return maps with one of the coordinates (e.g. Bergé et al. 1986).
Instead one can construct topologically equivalent return maps for the local periods
(i.e. the time-intervals between successive maxima or minima); such a return map in-
volves plotting the (i+ 1)-th period versus the i-th one. Another possibility consists
in using the maximum radii, R, (at v, =0), to construct a return map. Such a
return map, one maximum radius versus the preceding one, is very easy to construct
and is shown in Figure 5. The somewhat surprising result is that the complicated
behavior of the model give rise to intricate but almost one-dimensional return maps
with the same general properties as the quadratic Feigenbaum map. '

Many astronomers are used to thinking that every time seque‘nce can be fitted
with multiperiodic sum (which, indeed, is mathematically true over a finite time-in-
terval) and they may wonder what this chaotic fuzz is all about. From the Fourier
analysis (Figure 3) one can see that it would be necessary to use many closely spaced
frequencies (without a physical basis) to reproduce the irregular behavior of the time
series. It also turns out that the return maps for a typical multi-periodic signal gener-
ally do not at all look like the type of return map shown above. -
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Fig. 4a. Three-dimensional reconstructions of the trajectories for the three mod-
els of Buchler and Kovdcs (1987) for two different aspects (x=x;, y=Xj+k

2 =Xi+2k)-
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Fig. 4b. Three-dimensional reconstructions of the trajectories for the three mod-

els of Buchler and Kovdcs (1987) for two different aspects (x=x; y=xi+k
Z=Xj+2).
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Fig. 5. Return map for the maximum radius.

Model 2 has a higher luminosity to mass ratio with a mass of 0.4, a luminos-
ity of 400, both in solar units, a composition of X=0.745 and Z=0.005 and an ef-
fective temperature of 5870 K.

A typical temporal behavior of the surface radius and of the radial velocity are
shown in Figure 6. The Fourier amplitude spectrum is shown in Figure 7. The large
peak corresponds to the basic pulsation and the wild amplitude modulation gives rise
to a very noisy subharmonic structure. There is very little harmonic structure which
shows that nonlinear effects seem to be very weak. Again, otherwise very little knowl-
edge can be gained from the Fourier analysis.

The type of behavior exhibited by this model and the whole sequence of mod-
els to its left in the HR diagram studied in Buchler, Goupil and Kovdcs (1987) was
first explained by Pomeau and Manneville (1980) and they labelled it 'type I inter-
mittency’. It is most clearly understood with a return map. Figure 8 shows the re-
turn map constructed from the Poincaré sections of the reconstructed orbits. The
return map clearly does not appear one-dimensional. However if we plot a blow-up
of the same return map for selected streches as in Figure 9 which shows the suc-
cessive visitation number, it becomes very close to one-dimensional. One sees that
the orbit gets temporarily trapped near a bottleneck which is the vestige of an in-
tersection of the return map with a 45 line. The latter indicates the prior existence
of a couple of fixed points (one stable and one unstable) in a model at higher ef-
fective temperature (cf. Buchler, Goupil and Kovdcs 1987). Once the bottleneck is
passed the trajectory jumps around a strongly unstable fixed point on the upper right
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Fig. 8. Return map on a Poincaré section for Model 2.

Fig. 9. Pieces of the previous return map with visitation number.

(located at the intersection of the return map function and the 45° line) until a
sufficiently large pulsation reinjects it to the left of the tangency bifurcation.

The survey of Kovdcs and Buchler (1988) has demonstrated that a number of
widely different sequences of cool radiative Population 11 Cepheid models show two
tvpical, well understood, routes leading to chaotic pulsations as the effective tempera-
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ture is lowered. This type of irregular behavior is not an oddity of a few models,
but is very robust. It is also very comforting that this irregular behavior of the mod-
els should show up in the appropriate place in the HR diagram. This opens up the
door to the understanding of irregular behavior of real stars.

We have seen that there is a strong evidence that the underlying chaotic at-
tractor can be embedded in a low- (3) dimensional subspace of phase-space. It should
therefore be possible to model the essence of the complicated behavior with a small
number of coupled ordinary differential equations. The physical challenge now is to
discover the nature of these variables and the differential equations they obey.

This work has been supported by NSF (grant AST86-10097).
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A NONADIABATIC OSCILLATOR PRODUCING CHAOS

M. Takeuti
Astronomical Institute, Faculty of Science,
Tohoku University, Sendai, Japan

Abstract

An oscillator including simple nonadiabatic terms with phase delay is
studied. The oscillator shows period doubling into chaos.

The aim of the present short paper is to show a simple oscillator, which may
express the features of stellar pulsations. In the oscillator, the equation of motion is
linear and the nonadiabatic term in the equation of state is nonlinear. The orbits of
the oscillator indicate period-doubling developing into chaos with the changes of par-
ameters.

The oscillator is proposed by Tunaka and Takeuti (1987a). It is written in the
following form

dodt =y (1)
dy/dt = wx + ny + z : (2)
dz/dt = -3yy - pz ~ qy + syz (3)

where «, p, v, p, ¢, and s are contants. Equation (1) defines the velocity v as the
derivative of displacement x by the time ¢. Equation (2) is the equation of motion
where w is the damping constant, which we may use to express the y-mechanism in
the deep quasi-adiabatic region or any other linear damping in the stellar envelopes.
Equation (3) is the equation of state where v is the adiabatic exponent. p and ¢ ex-
press the nonadiabatic effect just around the equilibrium state. If the motion is linear
adiabatic and oscillatory one, y is proportional to dz/dt. So the expression —pz-qy +
+syz can be regarded as expression to show how the entropy changes on the z-dz/dt
plane.

Compared with one-zone stellar models (for example Baker 1976), we have put
« equal to 4. vy = 5/3 is chosen for simplicity. Then the model will be dynamically
stable. The condition of secular stability is as follows:
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ap<0 : (4)
When the condition
-up” + P43+ Qp + u-1-g) < 0 (5)

is satisfied, the singularity at the origin will be the unstable centre of spiral. This is -
nothing else than the pulsational instability.

Since we hope to reproduce various irregularity found in stellar variability by
the oscillator, the parameters are chosen to melt into the conditions (4) and (5).
From the inequality (4) we must put p<0. To increase the growth rate of oscilla-
tion with the decrease of p, we put u<0. Negative p comes from the restricted form
of the oscillator not from the physical assumption.

When we put p<0, 4 <0, the nonadiabaticity near the origin produces the pul-
sational instability. And then we put s<(. In this case, the nonadiabatic term shows
the occurrence of strong nonlinear cooling a little later maximum compression. The
cooling coincides with the observed luminosity maximum in Cepheid-type stars.

Another cooling in third quadrature of the y-z plane is the result of the sim-
plicity of the expression. The cooling in this phase works to reduce the effect of the
cooling just after the maximum compression.

In Figures 1 - 4, a part of the numerical results are indicated. The parame-
ters p, ¢ and s are 0.5, -0.7 and -10, respectively. The parameter p is changed from
-0.05 to -0.08. The decrease of p produces clearly the sequence of period-doubling
into chaotic motion. The orbits show that the strong nonlinear damping in the first
quadrant of the y-z plane is effective to make solutions chaotic. The detailed results
will be published in Tanaka and Takeuti (1987a).

We point out here only the fact that the oscillator has a close similarity to
the well-known Réssler equation (Rdssler 1976) the original form of which is writ-
ten as follows:

dXpdt = <Y - Z | (6)
dYde' = X" ay"” (7)
dZ/dt = b + Z(X -¢) ", (8)

where a, b, and c are constants. The similarity is clear when we arrange the origi-
nal equation into the following form
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Fig. 1. Period 1 limit-cycle of the oscillator presented by Tanaka and Tukeuti
(1987a). The parameters are p = 0.5, p = -0.05,¢9 = -0.7,5 = —10), respec-
tively. The upper diagram indicates the variation of x with the time ¢. The lower
diagrams indicate the orbit in the x-y-z space. The scale of z is one fourth of
others.
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Fig. 2. The period 2 limit-cycle of the oscillator, The parameters are
w o= =05 p = 0069 = 07 5 = -10, respectively.
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Fig. 3. The period 4 limit-cycle of the oscillator. The parameters are
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Fig. 4. Chaotic oscillations of the oscillator. The parameters are p = (.5,
p = -0.08, g = -0.7, s = =10, respectively.
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dx/dt =y )
dy/dt = —=x + 1y + z g (10)
dz/dt = (z - ¢q)(-rx + y - rp) - pqr (1)

where p. ¢, and r are constants. This form has been found in Tanaka and Tukeuti
(1987b).

We try to compare the oscillator with hydrodynamic stellar models. The develop-
ment of period-doubling into chaotic oscillation is found in the model W Virginis
stars (Buchler and Kovdcs 1987). Even though we have not known how is the fea-
ture of delayed luminosity maxima in their models, such a nonlinear strong damp-
ing may cause the period-doubling. Theirs are the first hydrodynamic models showing
period-doubling, although the radiative models may not be adequate at the red side
of the Cepheid instability Strip. A characteristic sequence of pulsations found in less
massive stellar models (see Nakata 1987; Takeuti 1987) is now understood as the
consequence of the tangent-bifurcation (Buchler, Goupil, and Kovdcs 1987; Aikawa
1987). It is not yet clear that the oscillator shows this kind of bifurcation.

A lot of variable stars having small surface gravity show irregularity. The ob-
servations have not been indicated on the return maps except for the Mira stars
(Suijo and Watanabe 1987). The return maps for Mira stars show stable fixed point
likely found in the maps of period-doubling type nonlinear oscillations. Unfortunately,
other stars have not been investigated in this way. It is not clear whether or not the
tangent bifurcation is real in the variable stars. The difference in the return maps
may be useful to investigate the hydrodynamical properties of stellar envelopes. It is
very important to draw the return maps of irregular variables based on the sequence
of observational materials.

We can see that the irregular oscillation is produced by the nonlinearity of non-
adiabaticity, when the parameters of the oscillator melt into some conditions. It seems
interesting to investigate one-zone stellar models much more precisely, by using the
properties of our simple oscillator.

I wish to express my thanks to Professor Y. Tanaka, Dr. T. Aikawa for their
useful comments and advice. I also thank to Professor Y. Sawada for his conversa-
tion.
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TESTING FOR CHAOS IN LONG PERIOD VARIABLES

S. Blacher
Institut d’Astrophysique, Cointe-Ougrée, Belgium
and
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Institute of Astronomy, Cambridge, UK
and
Institut d’Astrophysique, Cointe-Ougrée, Belgium*

Abstract

The behaviour of the variance function On2 of the local cycles (n=1),
double cycles (n=2), triple cycles (n=3), ..., of artificially generated time
series is analysed and compared with the variance function of a collection
of Long Period Variables. For strictly periodic and multiperiodic (F-peri-
odic, with F small), noisy periodic and multiperiodic, strictly chaotic, and
noisy chaotic time series the variance as a function of the ce(cle multiplic-
it{ n shows a characteristic shape. The variance function of the light curves
of a broad sample of Long Period Variables is found, in many cases, to
have a behaviour similar to the variance of a chaotic signal.

1.Introduction

Theoretical arguments that the variability of the less regular variables might be
interpreted as chaos, in the sense of deterministic chaos arising from a few excited
degrees of freedom only, were presented already in 1979 (Perdang 1979). The orig-
inal mathematical analysis was later substantiated by numerical experiments (Perdang
and Blacher 1982, 1984; Déiippen and Perdang 1984; Whitney 1984) which explored as
a possible factor generating chaos by the nonlinearities in the mechanical equations
describing the stellar oscillations (Hamiltonian chaos). The relevance of nonlineari-
ties in the thermodynamics of the oscillations as a mechanism generating chaos (dis-
sipative chaos) was demonstrated by Buchler and Regev (1982) and by Auvergne and
Baglin (1985) in the framework of one-zone models. The recent hydrocode experi-
ment by Buchler and Kovdcs (1987), in which the full model complications of ’real-

* Permanent Address
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isticc’ W Virginis type variables are implemented, and the full nonlinearities of the
pulsations are taken into account, has perhaps most persuasively shown that deter-
ministic chaos is indeed a likely mode of stellar variability.

While on the theoretical front the idea of chaos in the stellar oscillations has
thus become a well-established paradigm, no direct observational evidence in favour
of chaos in the actual light or velocity curves has been presented so far. Ruelle’s
phase space reconstruction technique — now the most popular method for detect-
ing deterministic chaos in an empirically given signal (Grassberger and Procaccia 1983,
Ben-Mizrachi, Procaccia, and Grassberger 1984) — has been applied to Cepheids and
variable white dwarfs, without leading to a clear-cut conclusion. The observations are
found to be too noisy to lend themselves to a proper phase space analysis (4uvergne
1987). As a further practical difficulty, significant phase space reconstructions require
a continuous, extremely long time run, of length T ideally of the order of several
thousand cycles. Observational light or velocity curves, however, typically present gaps;
moreover, they are known over rather short time runs only.

The construction of return maps — another popular procedure for testing for
deterministic chaos — is based on the same premises and requirements as the phase
space reconstruction. Accordingly, it faces the same difficulties.

The construction of power spectra of the time series at different resolutions, a
method in favour in chemistry (cf. Blacher and Perdang 1981), does not lend itself
here to a satisfying test either. In order to be convincingly applicable, this method
requires an a priori knowledge of the (effective) dimension of the phase space of
the oscillating system producing the signal.

In this paper we have adopted an approach based on the behaviour of a vari-
ance function defined in terms of the easily observable maxima of the time series
only. First introduced in the study of the Long Period Variables by Eddington and
Plakidis in 1929, this function has the virtue of isolating the noise contributions —
assuming that the latter is Gaussian. In principle, it also isolates, a regular signal (in
the sense of a periodic or multiperiodic signal with a small number F of independent
periods), provided that all of the basic periods of the latter lie in the range (a,7),
where A is the (constant) timestep between two successive data points. Non-regular
behaviour in the signal is found to produce a variance function showing a specific
average shape (cf. eq. (11)).

In contrast to the standard phase space reconstruction and the return maps,
which practically presuppose that the time signal to be analysed is produced by a
dynamical system whose effective phase space dimension D is low (say no higher
than 4), the method we describe here does not rely on such a restrictive assump-
tion. The possibility always remains that the actual stellar signal — which is un-
doubtedly more complex than a theoretically generated surface velocity curve or light
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curve of a highly schematised n-zone model, even if n=1,000 or 50,000 — is so
strongly distorted by the real structure and physical properties of the star as to make
the idea of even deterministic chaos obsolete. The actually observed signal could well
be intrinsically much more irregular than just deterministically chaotic. We wish to
recall at this stage that even the simplest families of (deterministic) cellular auto-
mata exhibit a “fourth class’ of behaviour which is indeed notoriously more random
than the third, or ’chaotic class’ of behaviour (Wolfram 1984). Surely, what cellular
automata can do should not be too difficult for a variable star. The variance func-
tion has, in principle, the potentiality of revealing also these classes of higher order
randomness.

We have selected the Long Period Variables (Miras) as the objects of our analy-
sis, for the following reasons. In the first place, the light amplitudes of Miras being
at least 2-2.5 mag (Hoffmeister, Richter, and Wenzel 1984), strict observational errors
in the determination of the maxima, and therefore in the time intervals between suc-
cessive maxima are expected to be minimal. In the second place, the large ampli-
tudes make it plausible that nonlinear effects do indeed directly influence the
oscillations. Thirdly, being easily observable, these stars have been extensively and
continuously surveyed. Fourthly, Miras do have a single conspicuous period, which
seemingly undergoes changes over timescales of the order of the period itself as well
as of the order of about 10 times the period; these changes could suggest the exist-
ence of a second, and perhaps a third period modulating the light curve.

Besides these points in favour of our choice of Mira variables, we are well
aware of at least two unfavourable circumstances. On the one hand, since the peri-
ods are longer than ~90 d, the variability of Miras has never been followed con-
tinuously over a very large number of cycles. On the other hand, being Red Giants
or Supergiants (of ~ 1M) surrounded by circumstellar envelopes in the process of
losing mass, Miras undergo pulsations which may be strongly distorted by atmospheric
and envelope phenomena; there exist at the present no simple theoretical models
capable of accounting for the observed character of the pulsations of these objects.

2. The variance function of artificial signals

Let f(t) be the light curve of a Mira star given over the time interval O<t<T.
let tj , i=0, 1, 2, ..., ¢ be the epochs of ¢ successive maxima. We define the
local periods, or cycles, P, the local 2-periods P, ..., the local n-periods pi™
as follows
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We next define the variance of the local n-periods, oy
o = (en+1)! iy (RM-<P™>)2 )
AT R 3 ea
with

<P™> = (czn+1)"! awn Pi™ ~ n <p> (3)

. 2 k.ol
We have analysed the dependence of the variance o,” on the cycle multiplic-
ity n under the following circumstances.

(1) If the star is strictly periodic, of period PsPi(”, i=1, 2, .., c-1, then the
variance function vanishes for any cycle multiplicity n
Onz ="} % (4)

provided that the observations are error-free.
If the determination of the epochs of the maxima is subject to accidental ob-
servational errors, then we have

5 2
Op” = 2 Ophs

) (5)

where Oops” is the variance of a single epoch measurement. The factor 2 accounts
for the fact that a determination of an n-period requires two epoch measurements.
The variance is thus independent of the cycle number n.

Relation (5) holds in the limit of a very large number of cycles only (¢ — o).
For a finite time run, the variance undergoes relative fluctuations of « 1/y/c. This
effect of a finite number of cycles ¢ is illustrated in Figure 1, showing the slow con-
vergence towards the constant value (S) with increasing number of cycles. The noise
is produced using a Gaussian random number routine, with doby/<P> =(.1 . The
two curves labelled ¢ =100 correspond to two different series of random numbers.
All continuous curves are obtained using a spline interpolation.

Typical observational runs of Miras involve of the order of 100 cvcles. There-
fore, the effect of noise cannot be completely filtered out; it is, however, significantly
reduced.
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Fig. 1. The contribution of Gaussian noise to the variance function of a peri-

odic signal, for different total numbers of cycles ¢=100 (two experiments) and
1500.

(2) Consider next the case of a Long Period Variable which is intrinsically
double-periodic. We assume that one amplitude is much smaller than the other (as
is suggested by the well defined cycles of these variables). Then the corresponding
variance function is a periodic function of the cycle number n. This is analytically
seen for a light curve of the form

f(t) = A sinwt + Aj sin (0t+d¢1) (6)
in which the dominant signal, of amplitude 4 and frequency w is contaminated by

a secondary wave. Assuming that

e1 = (A10/Aw) « | with n =0y < 1 (7)

we have for the variance, to lowest nonzero order in € ,

on? = (&/© ) [ - cos (2=rin)] (8)
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in the limit of a long enough run (T — «, ie. ¢ — «). Notice that the phase fac-
tor ¢1 of the secondary wave has disappeared in the variance. The presence of ob-
servational noise manifests itself again by the addition of a component (5) to relation

(8).

008 (o-n/< p>)2

004
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Fig. 2. The variance function i corresponding to a double periodic surface
displacement of the standard polytrope in the absence and in the presence of
Gaussian noise in the epoch measurements ( oghs/ <P > =0.1; c=70).

Figure 2 illustrates that these conclusions qualitatively hold for an arbitrary non-
linear double-periodic light or velocity curve. The lower curve in the figure corre-
sponds to a double periodic surface oscillation involving the coupled modes 8 and 9
of the standard polytrope (Perdang and Blacher 1982). The addition of noise is seen
to raise this curve on average by 2( o(,bs/<P>)2 (upper curve); but it introduces at
the same time a slight deformation of the original strictly periodic curve; the defor-
mation is the result of the fluctuations of the noise component due to the finite
number of cycles (as in Fig. 1); we mention also that the finite number of cycles
introduces a slight dependence on the phase ¢1 in the variance function.

(3) Suppose next that the star is intrinsically multiperiodic,v (F +1 -periodic), one
period being dominant, as is typically the case for Mira stars. Then the resulting var-
iance function On’ is in principle an F-periodic function of n. One can show this
property analytically using a representation of the signal similar to equation (6)
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f(t) = A sin ot+Xi=7 A; sin (wit+di) 9)

assuming that the components i are ’recessive’, i.e. satisfy inequalities (7). The vari-
ance function in the limit of a large enough number of cycles (¢ — «) is then a
linear superposition of expressions of type (8) (neglecting cross-terms between pairs
of the recessive modes i,j , ij=1, 2, .., F)

Onz = }:iij (& /w )2 [1 = cos(2wrin)] . (10)

This approximation is sufficient to indicate that over times shorter than the
shortest period (P =2u/w) the variance function increases quadratically with n (onzcx nz).
Over long time intervals (sufficiently longer than the longest period PF) it exhibits
the multiperiodic, regular behaviour of the variance; moreover, when averaged over
long times, say time intervals longer than the longest period (PF), the oscillatory be-
haviour is sifted out and there remains just the constant component of the sum (10).
Over time intervals between the shortest (P) and the longest period (PF), the num-
ber of components effectively contributing to the sum (10) increases with time (n);
therefore the variance function shows an average regular increase with n, the aver-
age rate of increase being essentially conditioned by the spacing of the frequencies.

The presence of noise again raises the On’n curve by the constant factor 200b52,
provided that the number of cycles is large enough. The actual finite value of ¢ pro-
duces fluctuations in the noise terin; as mentioned above, the latter show up as a
slight distortion (of relative order «1/y/c) in the intrinsic variance function of the
signal.

It can explicitly be shown that high frequency components in the signal (9), i.e.
periods shorter than the spacing of the data points of the signal, will manifest them-
selves as a noisy, n-independent component in the variance function (Perdang and
Blacher 1987).

(4) Besides the above examples of regular time series we have attempted to
simulate irregular signals using an expansion of type (9) (but relaxing the conditions
7), and by progressively increasing the number of components (F — «). It is indeed
clear that any observational signal given over a finite time interval, O<t<T, can be
represented analytically by such a Fourier type representation (9), on condition we
choose F large enough.
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Fig. 3. The variance function On? corresponding to a multi-periodic signal with
frequencies coinciding with the 10 first frequencies of the standard polytrope,
(a) for amplitudes chosen at random, with a uniform distribution in (0,1), in

the absence (lower curve) and in the gresence of noise (upper curve) respec-
s

tively, with oobs/ <P> =0.5 and c=18
power of the order j ™%,

Gaussian noise, with oghy/ <P > =(.1 and c=60.

(b) for amplitudes decreasing like a
j=1,...,9,10, in the presence and in the absence of
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We find that the character of the variance function strongly depends on the
statistical distribution of the frequencies and on the frequency dependence of the
amplitudes. We discuss here only two cases (cf. Perdang and Blacher 1987 for further
illustrations).

Figures 3a,b are dealing with the simulation of time series by Fourier-like rep-
resentations. Instead of an actual Fourier series with frequencies w,=nwo, n=1,2,
.., Wo=2w/T, we use a set of statistically uniformly distributed frequencies over a
certain range, in particular those of the standard polytrope; as the normalisation of
the fundamental frequency we choose 1 instead of 2w/T; with this choice a small
number of frequencies allows us to simulate a still wide variety of time signals (al-
though the long-time behaviour of these signals is fixed by their short-time varia-
tions). .

Figﬁre 3a shows the case of amplitudes 4 randomly distributed in the interval
0<A<1; the mean l-period <P> is then found to decrease with increasing F. We
observe a regularly increasing variance, with a quadratic behaviour near the origin
(as observed for n<3), an approximately linear increase at higher cycle numbers, and
finally a tendency towards a flattening at n=25. We expect that for higher n values,
the curve shows oscillations. The addition of even a very large amount of noise
( oobs/ <P > =0.5) is seen to produce only a slight local deformation.

Figure 3b corresponds to the case of amplitudes A4 decreasing with the frequen-
cies according to a power law, essentially as Axw™, a=2. The diagram exhibits an
increasing variance with a trend towards oscillation manifesting itself at lower n
values. The addition of noise ( oobs/ <P > =0.1) produces as expected, a vertical dis-
placement and a slight deformation of the intrinsic variance. :

For amplitudes decreasing exponentially with the frequencies, 4 «exp(-aw), the
behaviour of the variance depends strongly on a. For a very slow exponential
decrease, we recover case (a); for a =1 we reproduce the regular cases discussed
above, and in particular the behaviour of Figure 2. ’

In these illustrations the intrinsic variance is fluctuating about a curve of posi-
tive and slowly varying slope; analytically we may describe this behaviour by

on? = An®*+P(n) (11)

where 4 and o are ‘positive constants and P(n) is an oscillatory component. A best
fit of (11) over the interval plotted, disregarding the fluctuating term, gives a>1.
The overall increasing trend (4n®) holds over a finite n-interval only; it levels off
and eventually fluctuates around a finite threshold.
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Fig. 4. The variance function oy’ corresponding to a multi-periodic signal with
frequencies groportional to 10x27, j=1, ..., 9, 10 (a) for amplitudes chosen at
random, with a uniform distribution in (0,1), in the absence and in the pre-
sence of noise respec_t(i)vsely, with Oghy/ <P> =0.1 and c¢=600; (b) for ampli-
tudes decreasing as j — 7, j=1, ... , 9, 10 again in the presence and in the
absence of Gaussian noise; with oobs/ <P > =0.9 and c=600.
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In our second series of simulations displayed in Figures 4ab we et the frequen-
cies accumulate towards the origin. The frequency distribution is represented by
wj=10x27, j=12, .., 10.

In Figure 4a the amplitudes are statistically uniformly distributed, 0<A4 < 1. The
variance function shows again an increasing trend, with a superimposed oscillation.
Representation (11), with P(n) oscillatory is seen to be an excellent approximation
to the actually computed variance function,with a practically 1. Noise (oby/ <P > =(.1)
produces here little deformation, since we are using a much larger number of cycles
than in previous cases.

Figure 4b shows the variance function for amplitudes decreasing with order j,
as j ¢ a=0.5 . Again representation (11) applies. The effect of even an enormous
amount of noise (Gobs/ <P > =0.9) does not change the trend of the intrinsic vari-
ance function.

Although the time series corresponding to the variance functions plotted in
Figures 4ab remain of course strictly regular, the fact that the amplitudes do not
decrease at least exponentially with order is indicative that these signals conceal a
latent chaotic-like character: genuine chaos would manifest itself in the limit F > «.
The species of ’incipient’ chaos generated by the signal of Figure 4b is essentially
deterministic chaos arising through a Feigenbaum sequence. The species of chaos
created out of a signal of Figure 4a is seemingly more irregular than the variety of
Figure 4b, since all amplitudes remain in the same order in the former case.

In the limit F — «, the time behaviour underlying the variance shown in Figures
3a,b can likewise be considered as leading to chaos, provided that the amplitudes do
not decrease exponentially with order, and provided that we include also longer and
longer periods, (the longest periods being longer than the time interval T over which
the signal is given). The lack of predictability in a chaotic signal — which is the fin-
gerprint of chaos — is precisely the consequence of the existence of arbitrarily long
periods within the signal.

(5) We have investigated also a signal modelled by expansion (9) with the
frequencies showing a self-similar, hierarchical distribution at a reference frequency
and at the origin. Such a representation simulates the kind of chaos encountered in
Hamiltonian chaos. The behaviour of the variance function is then essentially the
same as for an adiabatic chaotic oscillation of a stellar model. In Figure 5 we dis-
play the variance function for a genuine chaotic oscillation produced through the
coupling of modes 8 and 9. The trend (11) is again obeyed, with a<1 with a fluc-
tuating component of pseudo-period ~12 cycles. A similar result holds for the cou-
pling of the fundamental mode and the first harmonic; the fluctuating term has a
shorter pseudo-period.
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Fig. 5. The variance function On’ corresponding to a chaotic surface displace-
ment of the standard polytrope (coupled modes 8-9) in the absence and in the
presence of Gaussian noise, with oghs/ < P> =0.03 and c~40.
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Our numerical results demonstrate the well known fact that a chaotic signal of
- finite length T cannot be distinguished from a signal en route towards chaos, namely
a regular signal with a large number of frequencies (including frequencies less than
24/T ). Empirically any finite-length signal with a very large number of frequencies
can either be viewed as regular or chaotic. If no further information is available —
for instance the dimension of the phase space of the dynamical system which generated
the signal, efc. — then manifestly no method can be devised to decide either way.
However, provided that long enough time series are at our disposal, we can easily
distinguish regular signals with a small number F of effective degrees of freedom (cf.
Fig. 2) from chaotic signals with a small number of degrees of freedom or from reg-
ular signals with a very large number of effective degrees of freedom (Figs. 3-5).
Noise, as our experiments demonstrate, does not seriously affect the shape of the
variance function. Perhaps we should point out that in all experiments we have
adopted a noise level which largely exceeds the realistically expected observational
errors in the epoch determination of Miras.

Noise pollution of the variance function — provided that it is in the form of
Gaussian noise — can be sifted out in a trivial way from genuine information. In
the representation of the variance function noise just manifests itself as an additive
positive factor (eq. 5) plus a slight deformation of the noiseless variance shape. This
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is clearly borne out in all of our experiments (Figs. 1-5). As indicated above, however,
the actual constant contribution in a variance function is, in general, only partially
an observational noise effect; short period fluctuations do contribute a constant fac-
tor to the variance as well.

3. The variance function of Mira stars

The variance function op” as a global characterisation of the variability of stars
was introduced in connection with a study of the light curves of the Long Period
Variables o Ceti and x Cygni by Eddington and Plakidis (1929). In their paper
Eddington and Plakidis raised the question of the physical nature of the irregulari-
ties superimposed on the dominant periodic variability of these stars. In current ter-
minology they actually asked whether the variability of Long Period Variables is
regular or chaotic.

In fact, the type of chaos Eddington had in mind was of a more irregular na-
ture than the mere deterministic variety. The idea Eddington suggested was that the
local periods P" showed strictly stochastic fluctuations, without any correlation be-
tween the fluctuations of successive periods P{" and Pi+ 1. It can be seen that
under this hypothesis the variance function obeys

on” = An (12)

(the exponent o in eq. (11) being equal to 1 and the fluctuating component P(n)
being zero). The direct calculation of the variance function from the observational
data led Eddington and Plakidis to conclude that ’the curves of o Ceti and x Cygni
appear to be fairly concordant with the hypothesis...” [of uncorrelated fluctuations].

The attempt at characterising the lack of strict periodicity of Long Period Vari-
ables by means of a variance function of type (12) (plus a constant noise term) was
followed up by several authors, but eventually abandoned in the sixties. Representa-
tion (12) plus noise was indeed found to lead to various observational inconsisten-
cies (¢f. the historical account in Perdang 1985).

We have computed the variance function on’ for a large sample of Mira stars
whose light curves have been observed over about 100 successive cycles. The obser-
vational information, taken from Campbell’s catalogue (Campbell 1955), refers to ob-
jects whose mean light curves are all symmetric, and virtually sinusoidal. It is therefore
reasonable to conclude that there is no major exotic physical mechanism operating
in these stars.
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The typical patterns of observational on® curves we encountered can roughly be
divided into 3 types (¢f. Figs. 6a,b,c,d).

(a) Miras with extremely irregular local period fluctuations from one cycle to
the next, with very large relative changes in the cycle lengths, and with superimposed
average period switches. For these stars the variance is regularly increasing, changing
from a quadratic behaviour onzmnz near the origin (n < 10), to a linear shape onzxn
at intermediate values of n (from 10 to 20), and seemingly tending towards a plateau
at higher n values (>20). We have observed this behaviour in the case of Z Aur
(Fig. 6a), an object which shows extreme local period fluctuations (95-150 d over
the observational time stretch); the averaged local periods display a jump from an
average value of 110 d to 135 d. The large values of ( 0.1/<P>)2 found for this
star are due to the period switches. '

(b) Miras with very irregular local period fluctuations, and large relative changes
in the cycle lengths, but without period switches over the observed time interval. The
variance has essentially the same shape as for case (a), but with characteristic
(o,,/<P>)2 values of a factor of 50 lower. The variable SS Her (range of the pe-
riod fluctuations 95-120 d), shown in Figure 6b, and R Vir are examples of this
class.

(¢) Miras whose local period fluctuations as a function of the number of cy-
cles, although irregular, exhibit some pattern: typically we observe a superposition of
several seemingly independent waves. These objects have a variance of type (11) with
a close to 1, together with a small amplitude fluctuation P(n). As an example we
quote S Car whose variance function fluctuates on a characteristic time scale of
~3-4 cycles (Fig. 6¢); a similar behaviour is observed for R Vul, X Cam or T Her.

(d) Miras whose local periods, while fluctuating, remain strongly concentrated
around an average value; a diagram of the local periods versus the cycle number
shows again independent waves.

In this case we observe a variance of type (11) with a<1 and a large oscilla-
tory contribution P(n). S Aql (Fig. 6d) and W Pup are illustrative examples of this
category.

If we compare these observational curves with the results of the numerical simu-
lations we notice the following correspondences: Case (a) and case (b) behaviour of
the variances can be reproduced by a signal with a uniform density of frequencies
and a uniform distribution of amplitudes (cf. Fig. 3a): such a signal, if interpreted
as chaotic, is presumably of a more irregular type than conventional deterministic
chaos arising for instance out of successive period doublings.
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Case (c) variances are similar to the simulation shown in Figure 4a, suggesting
a type of chaos more irregular than for instance the common variety encountered in
turbulence; we have here essentially uniform amplitudes over the region of accumu-
lation of the frequencies.

Finally, case (d) variances are reminiscent of Hamiltonian chaos (Fig. S), sug-
gesting an interaction of two modes.

In any event, if we accept the idea that the time behaviour of these stars in-
volves only a few effective degrees of freedom, the above results suggest that the
observations cannot be interpreted as regular oscillations. Our simulations also rule
out an interpretation of the irregularities as artifacts due to noise. The most plausible
conclusion is therefore that we are witnessing chaos.

4.Conclusion

Our numerical study using just the epochs of the maxima of the observational
light curves of a sample of Long Period Variables, indicates that the variability of
these objects is consistent with chaos in all cases we have analysed. We wish to men-
tion that we have also tried to construct return maps for these variables (Perdang
and Blacher 1987). Unfortunately, the noise level in the observations does not enable
us to isolate any clear cut pattern in those diagrams: the presence of noise merely
produces a random scatter of the data points all over an area. It is the virtue of the
procedure outlined in this paper to isolate noise (or high frequency fluctuations)
from the main signal.

We wish to remind the reader once more that an observationally given signal
can always be interpreted by a simple or a multiple Fourier series, so that we can -
never definitively conclude that the signal is ’intrinsically’ chaotic. It may well have
been generated by a dynamical system involving a huge number of degrees of free-
dom.
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